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Chapter 1

Law and Order

dx € A, not P(z) and Vz € A,P(z) have the opposite truth value.
Let I be a set and (A;);er be a family of sets.

o v € J;c; Ai iff(if and only if) Ji € I,z € A;, the set ;o Ai is called the union of (A;)icr.

o v () Aiiff Vie I,x e A the set [, A; is called the intersection of (A;)icr. [;cp Ai is not defined.

Let A be a set, we denote by Z2(A) the set of all subsets of A, called the power set of A.
Equivalently, it is the set TV of all functions from S to the set TV of truth values. This is often written 2%, since there
are (at least in classical logic) exactly 2 truth values.

1.1 Sets and Correspondences

1.1.1 Def

f=(Zy, o, T f) is a correspondence, where 9y is the departure set and @7 is the arrival set, and T'y is the subset of
{(z,y) | x € D¢,y € o5}, called the graph of f. f~! called the inverse correspondence, f~! = (o, .@f,Fjjl), L ={(y,z) |
(z,y) € Iy}
1.1.1.1 Remark (f~H)~!=Ff.

1.1.1.2 Notation We call Az := {(z,z) | x € X} the diagonal subset, Id, := (X, X, Az) is the identity correspondence
of X, (X, X,0) is the empty correspondence.

1.1.2 Image and Inverse Image

1.1.2.1 Def We denote f(A)={y € o/ | Iz € A, (x,y) € 'y} the image of A by f. We denote by Im(f) the set f(Dy),
called the range of f. We denote by Dom(f) the set f~!(7), called the domain of f. The inverse image of f means the image
of f~1.

1.1.2.2 Prop f(UiEI Ai) = Uiel J(A;). IE 1 # 0, f(ﬂie[ 4A;) C ﬂie[ f(Ai)-

1.1.3 Composition

gof=(Ds, 3, Tgos), Lgor ={(2,2) | Jy, (z,y) €Ty, (y,2) € [y}
The correspondence g o f is called the composite of f and g.

1.1.3.1 Prop (gof)'=f"log ' ho(gof)=(hog)of.

1.1.4 Defs in the Correspondence

1.1.4.1 Surjective o/;=Im(f).
1.1.4.2 Multivalued Mapping Z;=Dom(f).

1.1.4.3 Function Vz € Z; has at most an image of x by f.
Remark We denote by f(x) the unique image of x by f. We can also use x — f(z) to denote.

1.1.4.4 Injective Vz € o/ has at most an image of x by f~1.

7



8 CHAPTER 1. LAW AND ORDER

1.1.4.5 Mapping If f is a function and a multivalued mapping, then we say that f is a mapping. We use f: X — Y or

X 4 ¥ to denote "t is a mapping from X to Y”.
f is a mapping + f is injective/surjective/injective and surjective— f is a/an injective/surjective/bijective mapping, also
called f is a/an injection/surjection/bijection(one-to-one correspondence).

1.1.4.6 The Product Let I be a set, (A4;)ics be a family of sets, and A={J,.; A;. We denote by II;c;A; the set of all
mappings p: [ — As.t. u(i) € Ay Vi eI, if u € ;e A;, we often write p in the form of a family (u(i))ier. ierA; is called
the product of (4;)ies.

In particular, " denotes 2t™}. XN is called the sequence in X parametrized by N.

1.1.4.7 Restriction and Extension Let f and g be correspondences. If I'y C I'y, then we say that f is a restriction of
g, g is an extension of f.

1.1.4.8 Prop
o If gyof=1Idx, fogs=Idy, then f is a bijection, g1 = go = f~L.

e If fogand go f are bijections, then f and g are bijections.

1.2 Binary Relation

A binary relation on X, we refer to a correspondence from X to X.

1.2.1 Remark

xRy, xSy denotes (x,y)€ I'g, xRy denotes not xRy.

1.2.2 Concept
e If V& € X, xRx holds, then R is reflexive.

o If Vx € x, xRx holds, then R is irreflexive.

o IfV(z,y) € X x X, xRy implies yRx, then R is symmetric.

o IfV(z,y) € X x X, xRy and yRx implies x=y, then R is antisymmetric.

o IfV(z,y) € X x X, xRy and yRx can’t hold at the same time, then R is asymmetric.
o If V(x,y,2) € X x X x X, xRy and yRz implies xRz, then R is transitive.

e If R is transitive, reflexive and antisymmetric, then it’s an order relation.

e If R is transitive and asymmetric, then it’s a strict order relation.

e If R is reflexive, symmetric and transitive, then we say that R is an equivalence relation.

In general, we use an underlined notation to denote an order relation.

1.2.3 Partially Ordered Sets

Let X be a set and R be an ordered relation on X, the pair (X,R) is called a partially ordered set.
In addition, if Vz,y € X, either xRy and yRx, then we say that R is a total order and (X,R) is a total ordered set.

1.2.4 Upperbounds and Lowerbounds

Let (X,R) be a partially ordered set, A C X.
Let M € X. If Va € A,aRM, we say that M is an upperbound of A, relatively to R. If Va € A, aA M, we say that M is
a lowerbound of A, relative to R.

1.2.5 Well-ordered Set

If any non-empty subset of X has a least element, we say that (X,R) is a well-ordered set.

1.2.6 Induction Principle

Let (X,<) be a well-ordered set. Let P(.) be a statement depending on a parameter in X. Assume that Vo € X, Vy €
X<z, P(y) implies P(z), then Vz € X, P(x) holds.



1.3. COMPOSITION LAWS 9

1.3 Composition Laws

We mean a mapping from X x X — X.

1.3.1 Closed

Y is a subset of X. Y is closed under * means that Va,b €Y, axbeY.

1.3.2 The Restriction of *

Y is a subset of X. If Y is closed under *, which can also be presented as Vz,y € Y,z xy € Y. This composition law is
called the restriction of * on Y.

1.3.3 Semigroup, Monoid and Group
o IfV(z,y,2) e X x X X X, (zxy)*xz=uxx(yxz), we say that x is associative and that (X, *) is a semigroup.
Prop If * is associative, then @1 x Xg % -+ Ty -+ - = X1k To k Tz * -+ % (Tp_1 * Tp) .

o IfV(z,y) € X% 2 %y =y *x, then we say that * is commutative.

e Let (M, ) be a semigroup. If 3e € M,Vx € M,exx = x * ¢ = x, we say that e is a neutral element of (M, *), and we
say that (M, ) is a monoid.

e If x*y=e, then we say that x is right invertible, y is a right inverse of x; y in left invertible, x is a left inverse of y.

1.3.3.1 Group We denote by M* the set of all invertible elements of M, If M* = M, then we say that M is a
group.

1.3.3.2 Abelian Group A commutative group.

1.3.3.3 Submonoids and Subgroups If M, N are monoids/groups and N is a subset of M which is closed and
exists a neutral element, then N is a submonoid/subgroup.

1.3.3.4 Trivial Subgroup A subgroup of G which is G or {15}
1.3.3.5 Prop {Z/pZ} doesn’t have a non-trivial group when p is a prime.

1.3.3.6 Finite Group A group which has finite elements.

1.3.3.7 Lagrange’s Theorem Let G be a finite group, and let H be a subgroup of G. Then the order of H (that is,
the number of elements in H) divides the order of G.

1.3.3.8 Prop

e In a group, x has a unique left/right inverse, which are equal.

Proof: Let G be a group and = € G. Suppose y is a left inverse of x, meaning yxr = e, and z is a right inverse of z,
meaning xz = e, where e is the identity element of G.

We aim to show that y = z. Starting with yz = e, multiplying both sides on the right by z gives (yx)z = ez = z. Since
yx = e, this simplifies to z = z. Now, consider zz = e, and multiply both sides on the left by y, giving y(zz) = ye = y.
We conclude y = z.

Thus, the left and right inverses of = are equal. Furthermore, if  had another distinct left or right inverse, it would
contradict this result, so the inverse is unique.

So we denote by x~! its left and right inverse. If the composition law is denoted as +, the inverse of an invertible
element x is usually denoted as -x, y+(-x) is denoted as y-x.

excM* s le M, (z ) =ua

o (m,y) e M*-M* = aye M, (zy) ' =y ta~ L

Proof: (y~ 'z 1)(zy) =e.
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1.4 Ring Theory

1.4.1 Rings
1.4.1.1 Def If
e (A, +) forms a commutative group,
e (A,-) forms a monoid,
e For all (a,b,¢) € A3, (a+b)e = ac+ be, c(a+b) = ca+ cb,

then we say that (A, +,-) is a unitary ring.
By convention, the neutral element of (A, +)/(4,-) is denoted as 0/1, called the zero element/unity of A.
If A* = A\{0}, then A is a division ring or skewfield. If A is also commutative, then A is a field.

1.4.1.2 Prop If Aisafield, f: A — B bijection s.t. Va,b € A, f(a+0b) = f(a) + f(b), f(ab) = f(a)f(b), then B is a
field.

1.4.1.3 Proof Firstly, we want to show that (B,+) is a commutative group: Va,b € B, we can find its inverse image in
A called ag,by. a+b= f(ap+ by), so it’s closed. Since Va,b,c € B, we can find their inverse image ag, by, co, a + (b+¢) =
flao + (bo + co)) = f((ao +bo) + co) = (a+b)+ ¢, a+b= flag+by) = f(bo+ao) =b+a, Je = f(0) € B, eta=
f(0O+ap) = flap+0) =a+e=a, so (B,+) is a commutative monoid. For the same reason, (B, X) is also a commutative
monoid. Since Va € B, we can find its inverse f(—ag), a+ f(—ag) = f(—ag+ag) = f(0) = e, so (B, +) is an Abelian group.

Secondly, Va,b,c € B, a(b+ ¢) = f(ag(bo + o)) = f(aobo + apco) = ab + ac, so it’s a ring. Since B* = B\{f(0)} (which
is because Va,b € B\{f(0)}, f(apbo) always exists), it’s a field.

1.4.1.4 Prop If Aisa unitary ring, then foralla€ A, a-0=0-a = 0; for all (a,b) € A, (—a)-b=a-(=b)=—a-b.

1.4.2 Morphisms and Isomorphisms

1.4.2.1 Def Let (M,*)and (N,+) be monoids, we call morphism of monoids from (M,*) to (N,+) any mapping f : M — N
that satisfies:

o flem)=en.
e For all (z,y) € M2, f(z*y) = f(z)+ f(y).

If (M, ) and (NN, %) are groups, it’s also a morphism of groups. If f is bijection, then it’s an isomorphism.

1.4.2.2 Prop
e If My C M is a submonoid, then f(M;) C N is also a submonoid.

e If a € M*, then f(a) € N, f(a)™! = f(a™1).

1.4.2.3 Prop Let M be a monoid. Vz € M*, 3 a unique morphism of monoids from (Z,+) to (M,*) that sends 1 € Z to
X.

1.4.2.4 Morphism of unitary rings Let A and B be unitary rings. We call morphism of unitary rings from A to B
only when mapping A — B is a morphism of group from (A,+) to (B,+), and a morphism of monoid from (4, -) to (B,-).

1.4.2.5 Prop Let R be a unitary ring. There is a unique morphism from Z to R.

1.4.3 K-Algebra

K is a commutative ring. We call the K-algebra any pair(R,f), when R is a unitary ring, and f : K — R is a morphism
of unitary rings s.t. V(b,x) € K x R, f(b)a = xf(b).

1.4.3.1 Example For any unitary ring R, the unique morphism of unitary rings Z — R define a structure of Z-algebra
on R (extra: Z is commutative despite R isn’t guaranteed)

1.4.3.2 Notation Let K be a commutative unitary ring, (A,f) be a K-algebra. If there is no ambiguity on f, for any
(A, a) € k x A, we denote f(M\)a as Aa.
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1.5 Formal Power Series

1.5.1 Def
Let K be a commutative unitary ring, T be a formal symbol. We denote K™ as K[T]. If (a,)nen is an element of K,
when we denote K™ as K[T], this element is denoted as Y. a,7™. Such element is called a formal power series over K and

neN
an is called the coefficient of T™ of this formal power series.

1.5.1.1 Remark n € N is possible infinite, so Y a, couldn’t be executed directly.
neN

1.5.1.2 Notation
e omit terms with coefficient 0.
o write 7' as T.
e omit coefficient those are 1.

e omit 7°.
1.5.1.3 Example 170+ 27" + 172 + 073 4 ... + 0T™ + ... is written as 1 4+ 27 + T2.

1.5.2 Operations

Remind that K[T]={ " a,7™ | (an)nen € kV}, define two composition laws on K[TTJ:
neN
VF(T) =ag + (LlT + ceey G(T) = b() + blT + ceey let F' + G= (CLO + b(]) + (al + bl)T =+ .. FG = Z Z (ale)T”
neNi+j=n

1.5.2.1 Prop

o (FO)H = (z > (aibj)T") (Y eI = 3 ( > a,,chl> " = F(GH).

neNi+j=n neN neN \p,q,l=n

07° + -+ 0T™ + ... is the neutral element of (K[T],+).

1T + .-+ 0T™ + ... is the neutral element of (K[T],x).

(K[T],+,-) forms a commutative unitary ring,.

K — K[T] X+~ AT is a morphism.

1.5.3 Derivative

Let F(T) € K[T]. We denote by F'(T) or D(F(T)) the derivative of formal power series > (n+ 1)a,+1T™.
neN

1.5.3.1 Prop
e D(K[T],+) — (K[T],+) is a morphism of groups.
e Leibniz Rule D(FG) = F'G + FG'.

1.5.3.2 Prop ag is invertible in k, iff F(T) is invertible in K[T].

1.5.3.3 exp We denote exp(T) € K[T]as > T™, called the ezperimental series, which fulfills the differential equation
neN

D(exp(T)) = exp(T).

1.5.3.4 Sin and Cos We define the solution of 22 = —1is i € K. We define cos(T) := w7 sin(T) :=

exp(iT)—exp(—:iT)
21 :

1.5.3.5 Ord ord(A) means the infimum of ¢ € T s.t. A; # 0. If the infimum not exist, then ord(A) = +oo0.

1.5.3.6 In We define another form of power series In(1+7): In(1+7) = > #T" (ord(In(1+7T)) =1)

n€N21



12 CHAPTER 1. LAW AND ORDER

1.6 Topology of Formal Power Series

1.6.1 Cauchy Sequence

1.6.1.1 Idea A Cauchy sequence is an infinite sequence, which ought to converge in the sense that successive terms get
arbitrarily close together, as they would if they were getting arbitrarily close to a limit. Among sequences, only Cauchy
sequences will converge; in a complete space, all Cauchy sequence converge.

(Fi(T))ien be a sequence of elements in K[T], and F(T') € K[T]. We say that (F;(T))en is a Cauchy sequence if VI € N,
there exists N(I) € N s.t. V(4,5) € N%N(l), ord(F;(T) — F;(T)) > L.

We will discuss it later.

1.7 Universal Property of the Formal Power Series

1.7.1 K-Algebra Morphism

Let A and B be two K-algebras. We say that ¢ is a K-algebra morphism from A to B if ¢ : A — B satisfies VA € K, Va €

A, ¢p(Aa) = Ag(a).
For f: K -+ A and g: K — B, if ¢ is a ring morphism from A to B, then it is a K-algebra morphism iff p o f = g.

1.7.1.1 Theorem Let A be a K-algebra, and let x € A. Then there exists a unique K-algebra morphism:
K[T] = {Zpena,T" | 3d € N,Vn > d, a, =0} = A B¢ a,T" — 2L a2
1.7.1.2 Proof To prove that the morphism exists, we construct f : K[T] — A EfzoaiTi — Efzoaixi. Easy to prove

that it’s a K-algebra morphism.
To prove the morphism is unique: Obviously.

1.7.2 Polynomials
And the formal power series that belongs to K[T'] are called polynomials.

Monic polynomial refers to a polynomial whose leading coefficient is 1.

1.7.2.1 Def Let F(T) € K[T], F(T) = 3
deg(F(T)), called degree of F(T).

nen @I If {n € N | a, # 0} # 0, its greatest element is denoted as
1.7.3 Ord and Deg Explanation

For any f € K|[T]\ {0}, it can be written as f(T) = C - P{(T)% - Py(T)% ... P,(T)%, where p = P, € K[T] are monic
and irreducible, and d; =: ord,(f) € Z\{0}. Let |f|, := e~ (/).
Properties of ord,:

L For f,g € KT, ordy(fg) = ordy(f) + ordy(9); [fglp = |flp * |glp-

2. For f,g € K[T}, ordy(f + g) = min{ord,(f),ordp(9)}; [f + glp < max(|f]p, l9lp) < |flp +19lp-
3. |flp =0« ord,(f) = +o0, f=0 by convention.

4. If f # 0, then ord,(f) > 0.

The degree of a polynomial f € K[T], denoted as deg(f), is defined as the highest power of T" with a non-zero coefficient.
|f|oo = edEg(f)

Properties of deg:
L. For f,g € K[TY], deg(fg) = deg(f) + deg(9); [f9loc = | flso X |gloo-
2. For f,g € K[T), deg(f + g) < max{deg(f),deg(9)}; |f + gloc < max{|f|cc, gl }-

The ord we used before is ordr here.
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Sequences

2.1 Supremum and Infimum

2.1.1 Def
Let (X, <) be a partially ordered set, and let A and Y be subsets of X, s.t. ACY.

o If the set {y € Y | Va € A,a < y} has a least element, then we say that A has a supremum in Y with respect to <,
denoted by supy, <) A this least element, and we call it the supremum of A in Y with respect to <.

o If the set {y € Y |Va € A,y < a} has a greatest element, then we say that A has a infimum in Y with respect to <,
denoted by inf(y,<) A this greatest element, and we call it the infimum of A in Y with respect to <.

e Observation inf(y <) A = sup(y > 4.

2.1.1.1 Notation Let (X, <) be a partially ordered set, and let I be a set.
e If fis a function from I to X, sup f denotes the supremum of f(I) in X. inf f takes the same.

o If (z;)ics is a family of elements in X, then sup x; denotes sup{z; |7 € I} in X. in§ x; takes the same.
iel =

If moreover, P(-) denotes a statement depending on a parameter in I, then sup x; denotes sup{x; | ¢ € I,P(i) holds}.
ieI,P(3)

2.1.1.2 Example Let A=z € R|0<z<1CR. We equip R with the usual order relation: {y e R |Vz € A,z <y} =
{yeR|y>1},sosupA=1. {yecR|VeeAy<z}={yeR|y>0},soinfA=0.

2.1.1.3 Example ForneN, let z, =(—1)" € R, sup inf x,=—1, inf sup zx=1.
neN keNk>n nENkeNk>n

2.1.1.4 Prop Let (X, <) be a partially ordered set, A,Y,Z be subset of X, s.t. ACZ CY:
e If max A exists, then is is also equal to supy,<) A.
o If Sup(y, <) A exists and belongs to Z, then it is equal to Sup(z <) A.

inf takes the same.
Let (X, <) be a partially ordered set, and A,B,Y be subsets of X s.t. AC BCY:

o If Sup(y, <) A and Sup(y, <) B exist, then Sup(y, <) A< Sup(y, <) B.

o Ifinf(y <) A and inf(y <) B exist, then inf(y <) A > inf(y <) B.

Let (X, <) be a partially ordered set, I be a set and f,g: I — X be mappings s.t. V¢ € I, f(t) < g(¢):
e If inf f and inf g exist, then inf f <infg.

e If sup f and sup g exist, then sup f < supg.

2.2 Intervals

We fix a totally ordered set (X, <).

2.2.1 Def
Let I C X. If V(x,y) € I x I with z <y, one has [z,y] :={z € X | a <z <b} C I, then we say that I is an interval in X.

13
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2.2.1.1 Example Let (a,b) € X x X, s.t. a <b. Then the following sets are also intervals:
o Ja,bi={reX|a<z<b}
o [a,b={reX|a<xz<b}

o ja,b):={reX|a<az<b}

2.2.1.2 Prop Let A be a non-empty set and (Ix)xea be a family of intervals in X.

e () I, is a interval in X.
AEA

o If N In#o, I is ainterval in X.
A€A AEA

2.2.1.3 Def Let (X, <) be a totally ordered set. I be a non-empty interval of X. If sup I exists in X, we call sup I the
right endpoint.

inf takes the similar way.
2.2.1.4 Prop LetI be an interval in X.

e Suppose that b = sup I exists. Then Vz € I, [z,b[C I.

e Suppose that a = inf I exists. Then Vx € I,]a,x] C I.
2.2.1.5 Prop LetIbe an interval in X. Suppose that I has a supremum b and an infimum a in X. Then I is equal to one
of the following sets [a,b], [a,b], ]a,b], ]a,b].
2.2.2 Thick

Let (X, <) be a totally ordered set. If V(z,2) € X x X, s.t. < z, Jy € X st. <y < z, then we say that (X, <) is
thick.

2.2.2.1 Prop Let (X, <) be a thick totally ordered set. (a,b) € X x X, a < b. If I is one of the following intervals
[a, b]; [a, b[; ]a, b]; ]a, b]. Then inf I =a, supl =b.

2.2.2.2 Proof Since X is thick, there exists xg €]a,b[. By Def, b is an upper bound of I. If b is not the supremum of I,
there exists an upper bound M of I s.t. M<b. Since X is thick, there is M’ € X s.t. xg < M, M’ < b. Since [z, b[C]a,ble I.
Hence M and M’ belong to I, which conflicts with the uniqueness of supremum.

2.3 Enhanced Real Line

2.3.1 Def

Let +00 and —oo be two symbols that are different and don’t belong to R We extend the usual total order < on R to R J{—o0, +00}
st. Ve eR,—oco <z < +00.

Thus R J{—00, +00} become a totally ordered set, and R =] — oo, +00[. Obviously, this is a thick totally ordered set.
We define:

o Vr €| —o00,400] x4+ (4+00):=+00 (+00)+z:=400

o Vx € [—00,+00[ T4 (—00):=—00 (—00)+x:=—00
o Vz €]0,+00] z(+00) := (+00)z :=+00 z(—00) = (—00)z 1= —00
o Vx € [—00,0] z(400) = (F00)z:=—00 x(—00)=(—00)x:=+00

o —(+00):=—-00 —(—00):=+4cc (00)7t:=0

(+0) + (—0) (=) + (+00) (+00)0 0(+oc) (—0)0 0(—oc0) ARE NOT DEFINED, they are indeterminate
forms.

2.3.2 Order Complete

Let (X, <) be a partially ordered set. If for any subset A of X, A has a supremum and an infimum in X, then we say
that X is order complete.

2.3.2.1 Example Let Q be a set (Z(Q2),C) is order complete. If F is a subset of #(2), supF = |J A. In particular,
AeF
inffg=0Q supg=0a.
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2.3.2.2 Axiom (RJ{—o0,+0o0},<) is order complete. In R J{—o0, +o0} sup@ = —oo, inf & = +o0.

2.3.2.3 Notation
e For any A C R{J{—o00,+00} and ¢ € R, we denote by A + ¢ the set {a +c|a € A}.
o If A e R\{0}, \A denotes {\a | a € A}.
e -A denotes (-1)A.

2.3.2.4 Prop Forany A C R{J{—00,+00}, sup(—A) = —inf A, inf(—A) = —sup A.

2.3.2.5 Def We denote by (R, <) a field R equipped with a total order <, which satisfies the following condition:

o Y(a,b) e RxRs.t. a <b,onehas Ve e R,a+c<b+ec.
o V(a,b) € Rug X Ryp, ab > 0.

e VA C R, if A has an upper bound in R, then it has a supremum in R.

2.3.2.6 Prop Let A C [—o0,+00]:
e VceR sup(A+c)=(supA) +ec.
o YA€ R>y sup(AA) = Asup(A).
o VA Ry sup(AA) = Ainf(A).

inf takes the same.

2.3.2.7 Theorem LetI and J be non-empty sets.
f:I— [—00,+00],g:J — [—00, +0].

a=sup f(r) b=supg(y) c= sup (f () +9(y)).
wel yeJ (2,9) ETX T, L (2),9(5) }£{+00,— 00}
If {a,b} # {400, —00}, then ¢ = a +b.

inf takes the same.

2.3.2.8 Corollary Let I be a non-empty set, f : I — [—00,+00],g: J = [—00, +00]. Then

sup (f(x) +g(z)) < (sup f(z)) + (sup g(x))
€l {f(2).(x)}A{+o0, o0} el wel

inf takes the similar(<—>) (provided when the sum are defined).

2.4 Vector Spaces

In this section, K denotes a unitary ring. Let 0 be zero element of K, 1 be the unity of K.

2.4.1 K-module

2.4.1.1 Def Let (V,+) be a commutative group. We call left/right K-module structure any mapping ®:K x V — V:

o Y(a,b) e K x K,Nx €V ®(ab,x) = ®(a,®(b,z))/P(b, ®(a,x));
e V(a,b) e K x K,.Nz €V ®(a+b,x)=®(a,z)+ D(b,z);

o Vac K,V(z,y) eV XxV ®a,z+y)=D(a,z)+ P(a,y);

o VreV,o(lz)=ua.

A commutative group (V,+) equipped with a left/right K-module structure is called a left/right K-module.

2.4.1.2 Opposite Ring Let K° be the set K equipped with the following composition laws:
e K xK— K, (a,b)—~a+1b
e K x K — K, (a,b) — ba

Then K°P forms a unitary ring.

Any left K°P-module is a right K-module;
Any right K°P-module is a left K-module.
(K°P)P = K.

15
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2.4.1.3 Notation When we talk about a left/right K-module (V,+), we often write its left K-module structure as
KxV -V (azx)—ax
The defs become:

V(a,b) € K x K,Yx €V (ab)r = a(bx)/b(ax)
Y(a,b) e K x K,\Nx €V (a+b)x =azx+ bz
Va € K,¥(z,y) e VXV alx+y)=ar+ay
VeeV lx=zx

2.4.2 K-vector Space

If K is commutative, then K°P? = K, so left K-module and right K-module structure are the same. We simply call them
K-module structure. A commutative group equipped with a K-module structure is called a K-module. If K is a field, a
K-module is also called a K-vector space, and the elements of K are called scalars, the elements of V are called vectors.

2.4.2.1 Remark Let ®: K xV — V be a left or right K-module structure Vo € V,®(-,z) : K =V (a € K) — ®(a,z)
is a morphism of commutative groups. Hence ®(0,z) = 0, ®(—a,z) = —P(a, x).
Va € K,®(a,-) : V — V is a morphism of groups. Hence ®(a,0) =0, ®(a, —z) = —®(a,x)(- is a var).

2.4.2.2 Associativity Vr € K, (f(f+g)+h)(x) = (f +9)(x) + h(z) = f(x) + g(x) + h(z) = f(z) + ((g + h)(z)) =

(f + (g + 1)) ().
The mapping K x KI — K : (a,f:z+ f(x)) = af : x — af(z) is a left K-module structure;
The mapping K x K! — K : (a,f: 2+ f(x)) = af : z +— f(x)a is a right K-module structure.

2.4.2.3 Remark We can also write an element p € K7 in the form of a family (11)ier of elements in K, where p; is the
image of i € I by p. Then (u)ier + (Vi)ier := (s + Vi)ier, a(pi)icr = (apti)ier, (pi)icra = (ia)ier-

2.4.3 Sub K-module

Let V be a left/right K-module. If W is a subgroup of V s.t. Va € K,Vx € W ax/xa € W, then we say that W is
left/right sub K-module of V.

2.4.3.1 Example of Direct Sum Let I be a set. Let K®! be the subset of K! composed of mappings f : I — K s.t.
I; ={x €1]| f(z) # 0} is finite. It is a left and right sub K-module of K.

In fact, V(f,g9) € K x KI' I; ,={xel]| f(z)—g(x) # 0} CI;JI,, which is finite.

Hence f — g € K®1. So K®! is a subgroup of K.

Va € K,\Vfe K¥, I,;C It, Iz f(2)a) € Iy, so the proof is finished.

2.4.4 Morphisms of K-modules

2.4.4.1 Def Let V and W be left K-module, A morphism of groups ¢ : V' — W is called a morphism of left K-modules
iff Y(a,z) € K x V, ¢p(ax) = ap(x).

2.4.4.2 K-linear Mapping If K is commutative, a morphism of K-modules is also called a K-linear mapping. We denote
by hompg_ ar0a(V, W) the set of all morphism of left K-module from V to W. This is a subgroup of WV. That is because if f
and g are elements of homg _prqa(E, F'), then f — g is also a morphism of left K-module.

2.4.4.3 Proof
o (f—9)(z+y) = fla+y)—g(z+y) = (f(2)+f(y)—(9(x)+9(v)) = (f(x)—g(x)+(f(v)—9(y) = (f—g)(@)+(f—9)(y)

o (f=9g)lax) = f(ax) — g(azr) = af(z) — ag(z) = a(f(z) = g(x)) = a(f = g)(z)
If K isn’t commutative, homp nmod(E, F) isn’t a left K-module, since Af(ax) = Aaf(z) # alf(z). Otherwise, it is.

2.4.4.4 Theorem (Usually used in k-linear mappings, but stronger than that Prop.)
Let V be a left K-module. Let I be a set.
1 j=i
The mapping homg _rroa(K®1, V) — VI ¢+ (é(e;))ier is a bijection where e; : [ — K : j {0 ‘7 oy
jF#Ei
2.4.4.5 Proof Injectivity Suppose ¢1, 2 € homg roa(K®1, V) and (¢1(e;))ier = (d2(ei))icr. Then ¢1(X) = ¢o(X) for
all X € K. Since any element of K®! is a finite linear combination of ¢;’s and both ¢; and ¢y are K-module morphisms,
we conclude that ¢; = ¢o. Therefore, the map is injective.
Surjectivity Given (v;);c; € V!, define a morphism ¢ : K®/ — V by setting ¢(e;) = v; for each i € I. This def uniquely
determines ¢, since any element of K®! is a finite sum of the basis elements {e;};c;. Thus, every element of V! corresponds
to a morphism, proving surjectivity.
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2.4.5 Column

For any (x1,...,x,) € V", by the theorem, there exists a unique morphism of left K-modules ¢ : K™ — V s.t. Vi €
T

L,...,n,¢(e;) = x;. We write this ¢ as a column| : |. It sends (a1, ...,an) € K™ to a121 + ... + a2y

Ln

2.4.6 Kernel
Let G and H be groups and f : G — H be a morphism of groups, ker(f) = {x € G| f(x) = en}, called the kernel of f.

2.4.6.1 Theorem f is injective iff ker(f) = {eg}.

2.4.6.2 Proof Suppose f is injective, then Ker(f) = eq.

Suppose Ker(f) = eg, let (a,b) € G? s.t. f(a) = f(b). f(ab™1) = f(a)f(b~') = f(b)f(b~!) = ey. Hence ab~! = eg,
therefore a = b.

2.4.6.3 A New Left K-module Let (V,+) be a commutative group, I be a set. We have defined the composition law
+ on VI. Then V! forms a commutative group. Equipping with K, it’s a left K-module.

2.4.6.4 Theorem Let V be a left K-module, I be a set The mapping f : homg_nroa( K1, V) — VI ¢ (¢(e))i € 1
1 j=i

is an isomorphism of groups, where e; : I — K : j — {0 i
JjF#i

2.4.6.5 Proof One has (¢ + ¥)(e;) = é(e;) + vi(es), Y(p,v) € hompg_ rroa(KPT, V)2 Hence f(¢ + ) = (¢(e;) +
¥(ei))ier = f(¢) + f(1). So fis a morphism of groups.
bijection We have proved this previously.

2.4.6.6 Remark Suppose that K’ is a unitary ring and V is also equipped with a right K’-module structure, Then
homK,MOd(K@I7 V) C VE? s a right sub K’-module, and 1; in the theorem is a right K’-module isomorphism.

2.5 Monotone Mappings

2.5.0.1 Def LetI and X be partially ordered sets, f : I — X be a mapping.

o If V(a,b) € I x I s.t. a <b. One has f(a) < f(b)/f(a) < f(b), then we say that f is increasing/strictly increasing.

Decreasing takes similar way.

o If f is (strictly) increasing or decreasing, we say that f is (strictly) monotone.

2.5.0.2 Prop Let X)Y,Z be partially ordered sets. f: X —Y,¢g:Y — Z be mappings:
e If f and g have the same monotonicity, then g o f is increasing.
e If f and g have different monotonicities, then g o f is decreasing.

Strict monotonicities take the same.

2.5.1 Def on Functions

Let f be a function from a partially ordered set I to another partially ordered set. If f |pom(p— X is (strictly)
increasing/decreasing then we say that f is (strictly) increasing/decreasing.

2.5.1.1 Prop LetI and X be partially ordered sets. f be function from I to X.
e If f is increasing/decreasing and f is injection, then f is strictly increasing/decreasing.

e Assume that I is totally ordered and f is strictly monotone, then f is injection.

2.5.1.2 Prop Let A be totally ordered set, B be a partially ordered set, f be an injective function from A to B. If f is
increasing/decreasing, then so is f~1.
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2.5.2 Def of Morphism on Partially Ordered Sets

Let X and Y be partially ordered sets. f : X — Y be a bijection. If both f and f~! are increasing, then we say that f is
an isomorphism of partially ordered sets. (If X is totally ordered, then a mapping f : X — Y is an isomorphism of partially
ordered sets iff f is a bijection and f is increasing)

2.5.2.1 Prop LetI be asubset of N which is infinite. Then there is a unique increasing bijection A\; : N — I.

2.5.2.2 Proof bijection We construct f : N — I by induction as follows. Let f(0) = min I, suppose that f(0),..., f(n)
are constructed, then we take f(n+1) := min(I\{f(0), ..., f(n)}). Since I\{f(0), ..., f(n—1)} D I\{f(0), ..., f(n)}., therefore
f(n) < f(n+1). Since f(n+1) & {f(0),..., f(n)}, we have f(n) < f(n+1). Hence f is strictly increasing and this is
injective.

If f is not surjective, then I\Im(f) has a element N. Let m = min{n € N| N < f(n)}. Since N & Im(f),N < f(m). So
m # 0. Hence f(m —1) < N < f(m) = min(I\{f(0),..., f(m — 1)}). By Def, N € I\Im(f) C I\{f(0), ..., f(m —1)}. Hence
f(m) < N, causing contradiction.

uniqueness Easy to prove.

2.6 Sequence and Series

Let I C N be a infinite subset.
2.6.0.1 Remark Let X be a set. We call sequence in X parametrized by I a mapping from I to X.

2.6.0.2 Remark If K is a unitary ring and E is a left K-module then the set of sequence E! admits a left K-module

structure. If = (z,)ner is a sequence in E, we define a sequence > (z) := (Y. @;)nen, called the series associated with
ieli<n
the sequence x.

2.6.0.3 Prop ) :FE! — EYisa morphism of left K-module.

2.6.0.4 Proof Letx = (7;);cr and y = (y;)ics be elements of E'

Yo (@ity)=0 X z)+( X w)hA X mi= Y Ay

ieli<n ieli<n ieli<n ieli<n ieli<n

2.6.0.5 Prop LetIbe a totally ordered set. X be a partially ordered set, f : I — X be a mapping, J C I. Assume that
J does not have any upper bound in I.(Equals to ”J is infinite”)

e If f is increasing, then f(I) and f(J) have the same upper bounds in X.

o If f is decreasing, then f(I) and f(J) have the same lower bounds in X.

2.6.0.6 Proof Since f(J) C f(I), and upper bound of f(I) is an upper bound of f(J). Let M be an upper bound of
f(J). Let x € I. Since J does not have any upper bound in I, 3y € J,y > x. Hence f(z) < f(y). Hence f(x) < f(y) < M.
Hence M is an upper bound of f(I).

2.6.1 Limit

2.6.1.1 Def Let I C N be an infinite subset. V(x;)ner € [—00, +00]! where [—o0, +00] denotes R |J{—o0, +00}, we define:

limsup x,:=inf( sup z;), liminf x, :=sup( inf x;)
nel,n—-+oo nel iel,i>n nel,n—+oco nel i€li>n

If limsup =z, = liminf x, = [, we then say that (z,)n,cs tends to I and that [ is the limit of (z,)necr. If in addition
nel,n——+oo n€l,n—+o0

(Tn)ner € R and | € R, we say that (z,,)ner converges to I.

2.6.1.2 Remark If J C N is an infinite subset, then:

limsup = inf( sup a;), liminf =, =sup( inf ;)
neln—s+oo NEJ el i>n nel,n—+oo neJ t€lizn

Therefore, if we change the values of finitely many terms in (z;);c; the limit superior and the limit inferior do not change.

In fact, if we take J = N\{0, ..., m}, then mE() and sup(...) only depend on the values of z;,i € I,i > m.
ne neJ

2.6.1.3 Prop VY(z,)ner € [~00,+ool!, liminf =z, < limsup z,

n€l,n—+oo nel,n—-+oo
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2.6.1.4 Prop Let (z,)nes € [—00, +oc]!

lim su Ty +c¢)=( limsup =z,)+c¢ liminf (z, +c¢)=( lminf z,)+c
VeeR nGI,nﬁfoo( " ) (nGI,nHJIr)oo n) 7n€I,nﬁ+oo( " ) (nEI,n%+oo n)
limsup (Az,) =X limsup =z liminf (Az,) =X liminf =z
Ve e Rxo nel,nﬁfoo( n) nEI,nﬂfoo " nGI,nHJroo( n) nel,n—+oo "
lim su AZp) = A liminf =z liminf (Az,) =\ limsup =z
Ve € Reo nEI,n—Hl-Doo( n) neln—too "’ ”GLnHJFOO( n) nGI,n—Hl-Doo "

2.6.1.5 Prop Let (7,).cr be elements in [—oo, +-00]!. Suppose that there exists Ny € N s.t. ¥n € I,n > No, one has
Zp, < Yp, then

limsup (x,) < limsup y,, liminf (z,)< liminf gy,
nel,n—+oo nel,n—+oo nel,n—+o0o nel,n—+oo

2.6.1.6 Theorem Let (2,,)ner, (Yn)ner, (2n)ner be elements of [—oo, +oo]?.
Suppose that
e ANy e N,Vn € I,n > Ny one has z,, <y, < 2z,
e (zn)ner and (zp)ner tend to the same limit [
Then (yn)ner tends to l.

2.6.1.7 Subsequence Let I be an infinite subset of N, and (x,,)ner be a sequence in some set X. We call subsequence of
(Zn)ner a sequence of the form (2, )nc.s, where J is an infinite subset of I

2.6.1.8 Prop Let I and J be infinite subset of N s.t. J C I. ¥(z,)nes € [—00, +oc], one has

liminf (z,)< liminf x,, lmsup (x,)> limsup z,

nel,n—+oo ne€J,n—+oo nel n—+oo neJ,n——+oo

In particular, if (z,,)ner tends to I € [—oo, +00], then (z,,)necs tends to I.

2.6.2 Monotone Bounded Principle
2.6.2.1 Theorem Let I C N be an infinite subset and (zxn)ner be a sequence in [—o0, +00]

e If the mapping (n € I) — x,, is increasing, then (zx);cs tends to sup z,,.
nel

e If the mapping (n € I) — x, is decreasing, then (xy);cs tends to inf; T
ne

2.6.2.2 Proof Vn €, infics;>nxi = Ty, so liminf z,,=sup x,,. ¥Yn,m € I, Sup;cs ;>, Ti = SUD;c1 i>m Ti, 80 limsup s, =
SUp T, -

2.6.2.3 Notation If a sequence (xn)ner € [—00, +00] tends to some [ € [—o0, +00] the expression Ilim+ x,, denotes
nel,n—+oo

this limit [.

2.6.2.4 Corollary Let (z,)ner be a sequence in R>o Then the series Y x,(the sequence (Y, xn)ner) tends to an
nel i€l,i<n
element in R>q [J{+oo}. It converges in R iff it is bounded from above (namely, it has an upper bound in R).

2.6.2.5 Notation If a series ) z,, in [—00,+00] tends to some limit, we use the expression > z, to denote the limit.
nel nel

2.6.2.6 Prop In the set of real numbers R, every nonempty subset that is bounded above (or bounded below) has a least
upper bound (supremum) (or greatest lower bound, infimum).

2.6.2.7 Prop Let a € Ry, and b € Ry. The series ZneNEﬁ converges.

2.6.3 Theorem: Bolzano-Weierstrass

(Stronger than sequentially compact in this topological space.)
Let (z5,)ner be a sequence in [—o0, +00]. There exists a subsequence of (2, )ner that tends to limsup x,. There exists
nel,n—+oo

a subsequence of (z,,)necr that tends to  liminf x,.
nel,n—+oo
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2.6.3.1 Proof LetJ={nel|VYmel, ifm>nthen x, <z,}. IfJisinfinite, the sequence (zy)nes is decreasing, so
it tends to liminf =z, = inf z,. Vn € J, by Def, z,, = sup ;. So limsup =z, = inf sup =z; = inf z,, = lim  x,.
neJ,n—oo neJ iel,i>n nel,n—+oo ne€Jiel,i>n neJ neJn—+oo
Assume that J is finite. Let ng € I s.t. Vn € J,;n < ng. Denote by l = sup x,. Let N € Ns.t. N > ng. By Def,
nel,n>ng
sup x; <. If the strict inequality sup z; < [holds, then sup a;is NOT an upper bound of {z,, | n € I,ng <n < N}.
i€l i>N iel,i>N iel,i>N
So there exists n € I s.t. ng <n < N s.t. z, > sup x;.
ieli>N

We may also assume that n is the largest among the elements of I N [ng, N[ that satisfy this inequality. Then Vm € I if

m > n then x,, < x, Thusn € J contradicts the maximality of ng. Therefore, l = sup z;, whichleadsto limsup =z, =I.
i€li>N nel,n—+oo
Moreover, if m € I,m > ng, then m ¢ J, so x,,, < I (since otherwise z,, = sup x;, and hence m € J). Hence,
icli>m
V finite subset I’ of {m € I | m > nop}, max ; <l and hence dn € I, s.t. n > maxI’, and max & < Tp.
i€ icl’

We construct by induction an increasing sequence (n;) en in I. Let ng be as above. Let f : N — Is,, be a surjective
mapping. If n; is chosen, we choose n;1 € I s.t. njy1 > Ny, Ty, > max{T(j), Tn, |-

Hence, the sequence (z,,);en is increasing, and supx,,; <supxyy = sup @, =1
JEN JEN neln>no
So (Zn,)jen tends to I, limsup =z,
’ nel,n—+oo
2.7 Cauchy Sequence Again
Let (x,,)ner be a sequence in R. If inf sup Tp — Ty = lim sup ZTp — Tmm| = 0, then we say
NEN (n,m)eIxI, n,m>N N—=+00 (n,m)eIxI, n,m>N

that (x,)ner is a Cauchy sequence.

2.7.1 Prop
o If (x;);c; € R converges to some [ € R, then it is a Cauchy sequence.
o If (x;);er is a Cauchy sequence converges to 0, there exists M > 0s.t. Vn el |z, < M.
o If (x,)ners is a Cauchy sequence, then VJ C I infinite, (x,)nes is a Cauchy sequence.
o If (x,)ner is a Cauchy sequence, then VJ C T infinite and I € R s.t. (x,)nes converges to I, then (z,)nes converges to
l too.
2.7.2 Theorem: Completeness of Real Number

If (x,)ner € R is a Cauchy sequence, then it converges in R.

2.7.2.1 Proof Since (zp)nes is a Cauchy sequence, IM € Ry s.t. —M < x, <M Vne€l. So limsup z, € R. By

nel n—+oo

Bolzano-Weierstrass theorem. 3.J C [ infinite s.t. (2, )ner converges to limsup x, € R. Therefore, (z,)ner converges to
nel,n—-+oo

the same limit.

2.7.3 Absolutely Converge

We say that a series Y x, € R converges absolutely if > |z, | < +o0.
nel nel

2.7.3.1 Prop Ifaseries Y z, converges absolutely, then it converges in R.
nel

2.7.3.2 Remark (z,)ner converges to 0 can’t imply Y z, converges absolutely.
nel

2.8 Comparison and Technics of Computation

2.8.1 Def of O(),0()
Let (zy)ner and (yn)ner be sequences in R.
o If there exists M € Ryg and N € Ns.it. Vn € Isy, |2, < M|y, | then we write 2, = O(y,),n € I,n — +o0.

e If there exists (¢,)ner € Rf and N € N s.t. lim e, = 0and Vn € Isn,|z,| < |enyn|, then we write z,, =
nel,n—+oo -

o(yn) mel,n— +oo.
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2.8.1.1 Prop Let I and X be partially ordered sets and f : I — X be an increasing/decreasing mapping. Let J be a
subset of I. Assume that any elements of I has an upper bound in J. Then f(I) and f(J) have the same upper/lower bounds
in X.

2.8.1.2 Theorem Let I be a totally ordered set, f : I — [—o0,+o0] and g : I — [—00, +00] be two mappings that are
both increasing/decreasing. Then the following equalities holds, provided that the sum on the right hand side of the equality
is well defined.

xeh{m))gf;l}oi{iowoo}(f(w) +9(x)) = (itél; f(@))+ (ztél?g(y)), wel’{f(w)g(iir)l{#_oo#oo}(f(x) +g(2)) = (inf f(2))+ (;relflg(y))

2.8.1.3 Proof We can assume that f and g increasing. Let a = sup f(I),b =supg(l), A = {(z,y) € IxI | {f(x),9(y)} #
{00, +oo}}.

We equip A with the following order relation: (z,y) < («/,y') iff z < ',y <y’

Let B=ANA; = {(z,y) € A|z =y}. Consider h: A — [—00,+0] h(z,y) = f(x) + g(y), which is increasing.

Let (z,y) € A. Assume that = < y. 1 {f(3), g(y)} # {—o0,+oo}, then (y.y) € B and (1,9) < (3,). Tt {f(3), 9(0)} =
{—00, 400} and for (z,y) € A — f(y) = +00,9(y) = —00. So a = +o00. Hence b > —o0. So Iz € I s.t. g(z) > —oc0. We
should have y < z Hence f(z) 4+ g(z) is well defined, (z,2) € B and (z,y) < (z, 2).

Similarly, if > y, (x,y) has also an upper bound in B. Therefore: sup h(A) = sup h(B).

inf takes the same.

2.8.1.4 Prop LetI C Nbean infinite subset. Let (x,,)ner and (¥, )ner be elements of [—oo, +00]! s.t., Vn € I {zn, y,} #
{—00, +o0}. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

limsup (z, +y,) < ( limsup z,)+ ( limsup y,), liminf (z,+y,) > ( liminf z,)+ ( liminf y,)

nel,n—+oo nel,n—+oo nel,n—+oo nel,n—+o0 nel,n—+o00 nel,n—+o00

2.8.1.5 Proof VYneN/letAy= sup xz, By= sup ¥yn. (Anv)nenand (By)nen aredecreasing, and limsup x, =
nel n>N nel,n>N nel,n—+oo

inf Ay  limsup y, = inf By. By theorem: inf Ay + inf By = inf (Ay + By) Let Cy =

NeN nel n—too NeN NeN NeN NeN,{An By }#{—oco,+o0}

sup (zp +yn) < Ay + By if Ay + By is defined.
nel n>N

Therefore, inf Cn <
NEN

inf (AN JrBN) = inf Ay + inf By.
NeN{AnN,Bn}#{—o00,+o0} NeN NeN

2.8.1.6 Prop LetI C Nbean infinite subset. Let (z,,)ner and (y,)nes be elements of [—o0o, +00]! s.t. Vn € I {xy,yn} #
{—00,+o0}. Then the following inequalities holds, provided that the sum on the right hand side is well defined.

limsup (x, +yn) > ( limsup x,)+( liminf y,), liminf (z,+y,) > ( liminf =,)+ ( limsup y,)

nel,n—-+oo nel,n—+oo nel,n—r+o0 nel,n—r+0o0 nel,n—+o00 nel,n—-+oo

2.8.1.7 Proof Fake proof: limsup z, = limsup (2, +yn —yn) < limsup (z, +y,)— liminf y,.
nel,n—+oo nel,n—+oo ne€l,n—+oo nel,n—+oo
To have a true proof, we only need to discuss conditions with oco.

2.8.1.8 Theorem Let (z,,)ner and (y,,)ner be elements of [—oo, +-00]f. Assume that Vn € I,y, € R and (y,)nes converge
to some ! € R. Then: limsup (z, +y,)=( limsup z,)+!, liminf (x,+y,)=( liminf x,)+1.

nel,n—+oo nel,n—+oo nel,n—+oo nel,n——+oo

2.8.1.9 Prop Let (z,)ner and (yn)ner be elements of [—oo, +00]!. Then:

liminf max{x,,y,} = max{ liminf z,, liminf y,},
nel,n——+oo nel,n—+oo nel,n——+oo

liminf min{x =min{ liminf =z lim inf .
nel n—+oo { n7yn} {nel,n—H—oo n’nel,n—>+ooyn}

2.8.1.10 Proof max{x,,yn} > Tn, Yn, by the theorem of Bolzano-Weierstrass theorem, there exists an infinite subset

J of I s.t. lim  max{z,,y,} = limsup max{x,,y,}. Let J1 ={n e J|zy >y} Jo={neJ|z, <uynh
neJ,n—+oco neJ,n—~+oo
J1UJ2 = J, so either J; or Js is infinite.
Suppose that J; is infinite, then lim max{x,,y,} = lim max{Tn,yn} = lim =z, < limsup x,. If
neJ,n—+oo neJi ,n—+oo neJ,n—+oo nel,n——+oo
Jo is infinite, lim  max{x,,yn} = lim max{Ty,Yn} = lim z, < limsup z,.
neJ,n—+oo neJa,n—+oo neJn—+oo nel,n—+oo

2.8.1.11 Theorem Let (an)ner € R!, I € R. The following statements are equivalent:
1. (an)ner converges to .

2. limsup |a, —1|=0.

nel,n—+oo
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2.8.1.12 Proof

|an, — 1| = max{a, —,l —an}

limsup |a, — | = max{( limsup a,)—1{,l—( liminf a,)}

nel,n—+oo nel,n—+oo n€l,n—+oo
(1) = (2): If (an)ner converges to I, then limsup a, = liminf a, =1
nel,n—+oo ne€l,n—+o0
(2) = (1): If limsup |an, —1| =0, then limsup a, <1< liminf a,.
nel,n—-+oo nel,n—+oo nel,n—+oo
Therefore: limsup a, = liminf a, =I.
nel,n—+oo nel,n—+oo

2.8.1.13 Remark (ay)ncr converges to 0 is equivalent to limsup |a,| = 0.
nel n—+oo

2.8.1.14 Remark Let (a,)ner be a sequence in R, I € R.
The sequence (a,)ner converges to liff a, — I =0(1) ne€I,n— 4oc.
2.8.2 Calculates on O(),0()
2.8.2.1 Plus Let (a,)ner (al,)ner and (b,)ner be elements in RY:
e If a, = O(b,),al, = O(b,),n € I,n — +oo, then V(\, ) € R?, Aa,, + pal, = O(b,),n € I,n — +oo.

e If a, = o(by),a), = o(b,),n € I,n — 400, then V(\, ) € R?, \a,, + pal, = o(by),n € I,n — +oo0.

r'n

2.8.2.2 Transform Let (a,)ner and (by)ner be two sequence in R If a,, = o(b,),n € I,n — 400, then a, = O(b,),n €
I,n — +o0.

2.8.2.3 Transition Let (an)ner, (bn)ner and (¢, )ner be elements in RY:
e If a, = O(by,) and b, = O(cy,),n € I,n — +o0, then a,, = O(e,),n € I,n — +o0.
e If a, = O(b,) and b, = o(c,,),n € I,n — +o0, then a, = o(c,),n € I,n — 4o0.

e If a, = o(by,) and b, = O(c,,),n € I,n — +oo, then a, = o(c,),n € I,n — +o0.

2.8.2.4 Times Let (an)ner, (bn)ner, (¢n)ner, (dn)ner be sequences in R:
e Ifa— N =0(b,),cn, =0(dy),n € I,n — 400, then a,c, = O(b,d,),n € I,n — +cc.

e Ifa— N =o(b,),c, =0(dy),n € I,n — +o0, then a,c, = o(bpd,),n € I,n — +o0.

2.8.3 On the Limit
Let (an)ner, (bn)ner be elements of RY that converges to [ € R and I’ € R respectively. Then:
e (an + by)ner converges to 1+ 1.

o (anby)ner converges to Il
2.8.3.1 Prop Letae€R. Thena”™ =o(n!) n— +oo.

2.8.3.2 Proof Let NeNst. |a| <N.ForneNst. n>N

o e R e
n! N ol — N!(ﬁ

)an

lal
N

)™ = 0. Therefore: lim la”]
n—+oo ™

Ando< & <1 lim (

n—-4oo

= 0, namely a™ = o(n!).

2.8.3.3 Prop n!l=o(n") n— +oo

2.8.3.4 Proof Let NeNs;,0<2 <1l jim 2=

> on =
n n n—-+oo

2.8.3.5 Prop Let (a,)ner, (bn)ner be the elements of RY. If the series Y. b,, converges absolutely and if a,, = O(b,) n —
nel
+00. Then > a, converges absolutely.
nel
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2.8.3.6 Proof By Def, > |by| < 4o00. If |ay| < M|by| for n € I,n > N where N € N, then:

nel
Ylanl= 3 lanl+ D0 laal < D0 lasl+ Do lbal < 400,
nel nel,n<N nel,n>N neln<N neln>N

2.8.4 Theorem: d’Alembort Ratio Test
Let (an)nen € (R\{O})"

o If limsup|*2=L| < 1, then ) a, converges absolutely.
n—+o0o " neN

o If liminf|®=| > 1, then ) a, does not converge (diverges).
n—-+oo n nenN

2.8.4.1 Proof

1. Let o € R s.t. limsup|“2| < o < 1, v isn’t a lower bound of (sup |[“2]) yen.
n—+oo " n>N "
So 3N € N s.t. sup || < a. Hence for n > N |a,| < a" N|ay|, since % = N+£LINE2  _dn_ Therefore
>N an anN AN QaN+41 An—1

a, = O(a") since Y = 11 < 400, 3 a, converge absolutely.

neN neN

Lemma If a series > a, € R converges absolutely, then lim a, = 0.
neN n—-4o0o

n n—1 n n—1

Proof If (3 ai)nen converges tosome ! € R, then (> a;)nen,n>1 converges to [, too. Hence (an = (E ai> — < > ai>>
1=0 i=0 h A ,

converges to 1-1=0.

a

. . n _ . an
2. Let feRs.t. 1 <B<lnlgl_~l_2£\ ol _iflé%nlng|T+ll

So there exists N € Ns.t. f < inf |[*2].
n>N n
an
VneNn>N [ > 8.
Hence (|an|)nen is not bounded since |a,| > 8" V|a,|.
By the lemma: > a,, diverges.
neN

2.8.4.2 Prop Leta€R,a>1. Thenn=o0(a"),n — +oo.

8.4.3 Proof Lete > 0st. a=(1+¢)% a" = (1+¢)?" =1+¢e)"(1+e)" > (1 +mne)(l+ne) > e*n? Hence
< 4 =o(a").

2.8.4.4 Corollary Let a >1,t € Rso Then n' = o(a™),n — 400

2.8.4.5 Proof Letdé€ Nxgs.t. t <dThen n'~? < 1. So n® = nin!=? = 0O(n?). Let b= a > 1, n? = o((b")?) = o(a™).
Hence nt = o(a").

2.8.4.6 Corollary There exists M > 1 s.t. Vx € R,z > M, In(x) < .

2.8.4.7 Proof LetaceRst. l1<a<e.

2.8.5 Theorem: Cauchy Root Test
Let (an)nen be a sequence in R. Let o = lim sup|an|% :

n—-+oo

e If « <1, then Y a, converges absolutely.
neN

e If @ > 1then ) a, diverges.
neN

2.8.5.1 Proof

1. Let B8 € R, < B < 1. There exists N € Ns.t. |ay|# < f for n > N. That means |a,| = O(8") since 0 < 8 <1, 3 a,
neN
converges absolutely.

2. If « > 1 then VN ¢ N dn > N s.t. |an|% > 1, since otherwise AN € N Vn > N, |an|% < 1 contradiction. Hence
(lan|)nen cannot converge to 0.
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2.8.6 Leibniz’s Criterion
Let Yo7, (—1)"*!a, be an alternating series where a,, > 0. The series converges if:
1. a, is monotonic decreasing, i.e., ap4+1 < a,, for all n,
2. lim, _, a, = 0.

If these conditions are satisfied, the series converges.



Chapter 3

Topology

3.1 Absolute Value

3.1.0.1 Def Let K be a field. By absolute value on K, we mean a mapping |-| : K — R that satisfies:

1.Vae K |a|=0iff a=0.
2. VY(a,b) € K? |ab| = |a] - |b].
3. Y(a,b) € K2 |a+ b| < |a| + |b|(triangle inequality). Or we can say ||z| — |y|| < |z — y].

3.1.1 Bernoulli’s Inequality
Bernoulli’s inequality states that for all x > —1 and n € N,
(1+2z)" > 1+ nz.
3.1.1.1 Proof We will prove this inequality using mathematical induction on n.

For n = 1, we have
14z =1+

This is exactly 1 +x > 1+ 1 -z, so the base case holds.
Assume that the inequality holds for some positive integer n = k, i.e.,

(1+2)" > 1+ k.

We need to show that the inequality holds for n = k + 1, i.e.,
(1+z)" > 1+ (k+ 1)z
To prove this, start with the left-hand side:
(L+a) =1 +a)f - (1+a).
Using the induction hypothesis, we know that (14 x)¥ > 1 + kz. Thus,
I+ =0 +2)* 1+2)> 0+ k)1 +2).
Expanding the right-hand side, we get
(1+ke)1+2)=1+x+kr+ka? =1+ (k+ 1)z + ks
Since 22 > 0 for > —1, we have kz? > 0, and therefore,
T+ (k+ Dz +ka? > 14 (k+ 1)z,

Thus,
(1+2) > 1+ (k+ 1)z

This completes the inductive step.

3.1.2 Arithmetic-Geometric Mean Inequality (On real number’s field)

The Arithmetic-Geometric Mean Inequality states that for any non-negative real numbers aq, as, . ..

n
Zaz‘

i=1

>

Equality holds if and only if a1 = a9 = -+ = a,.

25

7a7L7
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3.1.2.1 Example Trivial absolute value:

0, ifa=0
lalo = .
1, ifa#0

a € 7\{0}

. pllida, p||idb,
o Plider

ordy,

3.1.2.2 Notation Take aprime number p. Voo € Q\{0} there exists an integer s.t. ord(a) = 1§ Where {

which is unique.

Q — RZO
3.1.2.3 Prop ||: p (@) f o (0 is a absolute value on Q.
a—
0 ifa=0

3.1.2.4 Proof
(1) Obviously.
(2) If o = porde(@ e g = pords(B e pllidabed.aff = porde(@Tords(B)ac  plidac, p||idbd

(3) a+ 8= pordp(a)% +pOpo(/8)§. Assume Opo(Oc) > OT‘dp(ﬂ), a+ 8= pordp(ﬂ) (pordp(a)fordp(ﬁ)% + 5)
— pords(B) P Padibe pighd. So ordy(a + B) > ord(B).

Hence ord,(a-+B) > min{ordy (@), ordy(8)}. So la-+8], = p~ord(@+5) < max{p=ord (@), p=ords(9)} = max{lal,, [al,} <
|l p, |-

3.2 Quotient Structure

3.2.1 Quotient Set

Let X be a set and ~ be an equivalence relation on X.
For any x € X, we denote by [z] the set {y € X | y ~ 2} and call it the equivalence class of x. Let X/ ~ be the set
{[z] | x € X}, the name of it is quotient set.

3.2.1.1 Prop Let X be a set and ~ be an equivalence relation on X.
1. For any z € X and any y € [z], one has [z] = [y].

2. If a and B are elements of X/ ~ s.t. o # 3, then a3 = 0.

3. X:UOLEX/N Q.

3.2.1.2 Proof

1. Let z € [y]. Then y ~ 2. Since y € [z], one has & ~ y. Therefore,  ~ z namely z € [z]. This proves [y] C [z].

Moreover, since & ~ y, one has = € [y]. For the same reason, [z] C [y]. Thus we obtain [z] = [y].
2. Suppose that a8 # 0 and y € a(S. By (1), « = 8 = [y]. This leads to a contradiction.

3. For any z € X, z € [z]. Hence z € Uan/N a. Hence X C Uan/N a. Conversely, for any « € X/ ~, « is a subset of
X. Hence [, ¢ x/. @ € X.

3.2.2 Left/Right Action

Let G be a group and X be a set.

We call left action of G on X any mapping G x X — X (g,z) — gx that satisfies Vo € X, 1z = x, ¥(g,h) € G%,z €
X, g(hz) = (gh)x

We call right action of G on X any mapping G x X — X (g,x) — xzg that satisfies Vo € X, 21 = x, V(g,h) € G*,z €
X, xz(gh) = (zg)h.

3.2.2.1 Remark If we denote by G°P the set G equipped with the composition law G x G — G (g,h) — hg, then a
right action of G on X is just a left action of G°P on X.

3.2.2.2 Prop Let G be a group and X be a set. Assume given a left action of G on X, Then the binary relation ~ on X
defined as x ~ y iff dg € G, y=gx is an equivalence relation.
For any = € X, the equivalence class of x is denoted as Gx or orbg(z), called the orbit of x under the action of G.
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3.2.2.3 Proof
1. Vo € X, x=1x, so © ~ .
2. Y(z,y) € X2, if y=gx for some g € G, then g~y = g7 1(g7) = (¢ 'g)z = 1o = .

3. V(z,y,2) € X3, if I(g,h) € G? s.t. y=gx and z=hy, then z=h(gx)=(hg)x. So x ~ z.
3.2.2.4 Notation We denote by G\ X the set X/ ~.

3.2.3 Projection Mapping

Let X be a set and ~ be an equivalence relation, the mapping X — X/ ~, (x € X) +— [] is called the projection mapping.

3.2.3.1 Example Let G be a group and H be a subgroup of G(non-empty subset s.t. V(z,y) € H?, xy~! € H).
Then the mapping H X G — G is a left action of H on G. Thus we obtain two quotient sets H\G and G/H.
3.2.4 Normal Subgroup

Let G be a group and H be a subgroup of G. If Vg € G, h € H, ghg~! € H, then we say that H is a normal subgroup of
G.

3.2.4.1 Remark

1. For any g € GG, gHCHg provided that H is a normal subgroup of G.
In fact, Vh € H, 30/ € H s.t. ghg~! = h’. Hence gh=nh’g, this shows gH C Hyg.
In" st. g~ hg = h". Hence hg=gh”. This shows Hg C ¢gH.

2. If G is commutative, any subgroup of G is normal.

3.2.4.2 Theorem Let G be a group and H be a normal subgroup of G.
Then the mapping G/H x G/H — G/H is well defined and determines a structure of group on the quotient set G/H.
Moreover, the projection mapping 7 : G — G/H x +— xH is a morphism of groups.

3.2.4.3 Proof

1. If xH=x'H and yH=y’H, then 3h; € H and hy € H s.t. x'=xh;, y'=yho. Hence x’y'=zhiyho=(xy)(y 'h1y)hs.
Therefore (2'y')H = (zy)H. The mapping is well defined.

2. Y(z,y,2) € G3, (xH)(yH x zH) = xH((y2)H) = (x(y2))H = (*H x yH)zH.
Vee G, 1H x aH =xH x 1H =zH, v 'H x «H = 1H.

3. m(ay) = (zy)H = zH x yH = w(x)7(y).
3.2.4.4 Prop LetK be a unitary ring, E be a left K-module and F be a sub K-module. Then the mapping K x (E/F) —

E/F is well defined, and defines a left K-module (a,[z]) — [az] structure on E/F. Moreover, the projection mapping
7 : E — E/F is a morphism of left K-modules.

3.2.4.5 Proof Letxand x' be elements of E s.t. [x]=[x], that means 2’ — v € F'. Hence a(z/ —z) = as’ —az € F. So
[axi[ta )iv]e check that E/F forms a left K-module:

o a([z] + [y]) = a([z +y]) = [a(z + y)] = [az + ay] = [az] + [ay].

o (a+b)[z] = [(a+b)z] = [az + bx] = [az] + [ba].

o 1[x]=[1x]=[x].

o a(bfx])=albx]=[a(bx)]=[(ab)x]=(ab)[x].

By the previous Prop, 7 is a morphism of groups. Moreover, Va € E, a € K, w(az) = an(x).

3.2.5 Two-sided Ideal

Let A be a unitary ring. We call two-sided ideal any subgroup I of (A,+) that satisfies the following condition: Vz €
I, ac A, {az,za} C 1. (Iis a left and right sub K-module of A)
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3.2.5.1 Theorem Let A be a unitary ring and I be a two sided ideal of A. The mapping (A/I)x(A/I) — A/I ([a], [b]) —
[ab] is well defined. Moreover, A/I becomes a unitary ring under the addition and this composition law, and the projection

mapping A = A/I is a morphism of unitary ring.

3.2.5.2 Proof Ifd ~a, ¥ ~b,itmeansa’—a € I, b’ —b € I, then a’b' —ab = a'b' —a’b+a’b—ab = o/ (V' —b)+(a’—a)b € I,
Therefore a’t’ ~ ab. w(ab) = w(a)w(b), m(1) is the unity.

3.2.5.3 Example Letde€Zand dZ={n€Z|3Im e Z,n=dm}, dZ is a two sided ideal of Z.

If m € Z, for any a € Z, adm=dmagc dZ. Denote by Z/dZ the quotient ring. The class of n € Z in Z/dZ is called the
residu class of n modulo d.

If A is a commutative unitary ring, a two sided ideal of A is simply called an ideal of A.

3.2.5.4 Theorem Let f: G — H be a morphism of groups.
1. Im(f) is a subgroup of H.
2. Ker(f) is a normal subgroup of G.

3. The mapping f : G/Ker(f) — Im(f) [x] = f(z) is well defined and is an isomorphism of groups.

3.2.5.5 Proof

1. Let @ and 8 be elements of Im(f). Let (x,y)€ G? s.t. a = f(z),8 = f(y). Then af~! € Im(f). So Im(f) is a
subgroup.

2. Let x and y be elements of Ker(f). One has f(zy~!) = f(z)f(y~!) = 1u, so zy~! € Ker(f). Hence Ker(f) is a
subgroup of G. Let € Ker(f) and y € G. One has f(yzy~!) = f(y)f(x)f(y)~' = 1. Hence yry~! € Ker(f). So
Ker(f) is a normal subgroup.

3. If @ ~ y then 3z € Ker(f) s.t. y=xz. Hence f(y) = f(z)f(z) = f(z). So f is well defined. Moreover f([z][y]) =

F(ley)) = fley) = £@)f(y) = F([]) F((y]). Hence f is a morphism of groups.

By Def, Im(f) = Im(f). If x and y are elements of G s.t. f(x)=f(y), then flzy=t) = 1g. Hence xy~! € Ker(f). Since
= (zy~ Yy, x ~ y, that means [z] = [y]. Therefore f is injective.

3.2.5.6 Theorem Let K be a unitary ring and f : F — F be a morphism of left-K-modules.

1. Im(f) is a left sub-K-module of F.
2. Ker(f) is a left sub-K-module of E.
3. f: E/Ker(f) — Im(f), [z] = f(z) is an isomorphism of left K-module.

3.2.5.7 Proof
1. Let a € K,z € E, af(x) = f(azx) € Im(f).
2. Let a € K, z €Ker(f), f(az) = af(z) = a0 = 0.
3. Leta € K, x € E, f(az]) = f(Jaz]) = f(az) = af(z) = af([z]).

3.3 Topology

3.3.1 Topological Space

Here I skipped many things mentioned in the class ”Geometry and Topology”.

3.3.1.1 Remark While the union of the collection of topologies may not form a topology, the intersection of any collection
of topologies do forms a topology.

3.3.2 Metric Space
We define (X, d) a metric space, s.t.

1. d(x,y)=0 iff x=y.
2. d(x,y)+d(y,z) 2d(x,2).

3. d(x,y)=d(yx)-
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3.3.2.1 Isometry isometry=distance preserving + bijective.

3.3.2.2 Prop Strongly equivalent metrics are topologically equivalent, and conversely, topologically equivalent metrics
are strongly equivalent.

3.3.2.3 Example Let (X;,d;), i € {1,...,n} be a family of metric spaces. Let X be the product set X; x --- x X,,. We
call d(x,y) := max;eq1,... .ny di(zs, ;) the product metric of dy, ..., d,.
3.3.3 Axiom of Choice

Given a family of non-empty sets {A;};cr, where I is an index set, there exists a function f (called a choice function)
s.t. for each i € I, we have f(i) € 4;, meaning that an element is chosen from each set A;.

3.3.4 Theorem: Zorn’s Lemma
If VA C X that is totally ordered with respect to <, there exists a maximal element x( of X.

3.3.4.1 Remark Let (X,<) be a well ordered set, y ¢ X. We extend < to X |J{y} s.t. Vo € X,z < y. Then (X U{y},<)
is well ordered.

3.3.5 Initial Segment

Let (X,<) be a well ordered set, S C X, if Vs € S and € X, x < s implies € S, then we say that S is an initial
segment of X.
If S is an initial segment s.t. S # X, then we say that S is a proper initial segment.

3.3.5.1 Prop Let (X, <) be a well ordered set, if (S;);cs is a family of initial segments of X, then |J
segment of X.

ser i 18 an initial

3.3.5.2 Proof Vsel|J..;S;, Fielst seS;. Therefore Xo3 CS; C UjEI S;.

iel
3.3.5.3 Prop Let (X,<) be a well ordered set.

1. Let S be a proper initial segment of X, x=min(X\S5), then S = X_,.

2. X -5 P(X) z+— X, is strictly increasing.

3. The set of all initial segments of X forms a well ordered subset of (#(X), Q).
3.3.5.4 Proof of the Third Prop Let F C Z(X) be a set of initial segments s.t. F # (). Then there exists A C X s.t.

F\{z} ={X<p |z € A}. If A =0 then F = {X}, and X is the least element of F. Otherwise A # () and also have a least
element a. Then by (2) X, is the least element of F.

3.3.5.5 Lemma Let (X, <) be a well ordered set, f : X — X be a strictly increasing mapping. Then Va € X, z < f(x).

3.3.5.6 Prop Let (X, <) be a well ordered set, S and T be two initial segments of X. If f : § — T is a bijection that is
strictly increasing, then S=T and f = Idg.

3.3.5.7 Proof We may assume T'C S. Let ¢+ : T — S ¢+t be the inclusion mapping and g=cto f, S — S.

Since g is strictly increasing, by the lemma, Vs € S, s < g(s) = f(s) € T. Since T is an initial segment, s € T. Hence
S=T.

Apply the lemma to f~!, we get Vs € S, s < f~!(s). Hence f(s) < s, therefore f(s)=s.

3.3.6 Isomophic

Let (X,<), (Y,<) be partially ordered sets.
If there exists f: X — Y that is both increasing and a bijection, we say that (X,<), (Y,<) are isomophic.

3.3.6.1 Def of </ < Let (X,<), (Y,<) be well ordered sets. If (X,<) is isomorphic to an initial segment of (Y,<), we
denote X <XY.
If X is isomorphic to Y, we note X ~ Y. If xt Xy but X ~ Y, we note X <Y.

3.3.6.2 Prop Let X,Y be well ordered sets. Among the following conditions, one and only one holds: X <Y, X ~
Y, Y < X.
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3.3.6.3 Proof

1. We construct a correspondence f: X — Y s.t. (x,y) € I'y iff X, ~ Y.,. By the last prop of Oct. 11, f is a function.

If (a,b) € Dom(f) x Dom(f), a < b, then Xoo C X<p. By Def, Yoy ~ Xcb, Yepa) ~ Xca. Hence Yo is
isomorphic to a proper initial segment of Y_ ). Therefore Y. () is a proper initial segment of Y_ ;). We then get
f(a) < f(b). Thus f is strictly increasing.

2. Let a € Dom(f). Let z € X, < a. Then X, is a proper initial segment of X, ~ Y y(,). Hence Jy € Y_y(,,
X<y ~ Y.,. This shows that € Dom. Hence Dom(f) is an initial segment of X. Applying this to f~!, we get:
Im(f) = Dom(f~!) is an initial segment of Y.

3. To prove that either Dom(f)=X, or Im(f)=Y. We assume that x € X\Dom(f), y € Y\Im(f) are respectively the least
elements of X\ Dom(f) and Y\Im(f). Then we get Dom(f) = X, Im(f) = Y.,. We obtain X, ~ Y, (z,y) € T'y.
Contradiction!

Cases
1. Dom(f) =X, Im(f) CY, X <Y.
2. Dom(f) c X, Im(f) =Y,Y < X.

3. Dom(f)=X, Im(f)=Y, X ~ Y.

3.3.6.4 Lemma Let (X, <) be a partially ordered set. ./ C Z(X).
Assume that:

1. VA e .7, (A, <) is a well ordered set.
2. V(A,B) € ¥ x .7, either A is an initial segment of B, or B is an initial segment of A.

Let Y = J e A Then (Y, <) is a well ordered set, and, VA € ., A is an initial segment of Y.

3.3.6.5 Proof

l.LtAe S zeA yeY,y<x SinceY =gy B, IB€ S, st. ye B. If y ¢ A, then B ¢ A. Hence A is an initial
segment of B. Hence y € A. Contradiction!

2. Let ZCY,st. Z#0. Then 3A € ., A(NZ # 0. Let m be the least element of A(Z. Let z € Z be the least
element of Z. Let B € ¥ s.t. z€ B. If z€ A, thenm < z. If 2 ¢ A, then A is an initial segment of B.

Since B is well ordered, z < m. Since m € A, we get z € A. Contradiction!

Therefore, m is the least element of Z.

3.3.7 Proof of Zorn’s Lemma

Suppose that X doesn’t have any maximal element. Let w = {well ordered subsets of X}. Let f:w — X s.t. f(A) is an
upper bound of A € w. If A € w satisfies Va € A, a=f(A.,), we say that A is a f-set.

Let . = {f-sets}. Note that } € .. If A € ., AU{f(4A)} € ~. In fact, if a € A, then A, = (AU{f(A)})<a. If
a = f(A) ¢ A, then (AU{f(4)})<a = A.

Let A and B be elements of .. Let I be the union of all common initial segments of A and B. This is also a common
initial segment of A and B.

If I # Aand I # B, then 3(a,b) € Ax B, I =A<, = Bep. f(I) = f(Aca) = f(B<p). Hence a=b. Then I(J{a} is also
a common initial segment of A and B, contradiction!

By the lemma, Y :=J, . A is well ordered, and any A € % is an initial segment of Y.

Ya €Y, JA € ., a € A. Since A is an initial segment of Y, A, = Y<,. Hence f(Y.,) = f(A<,) = a. Hence Y € .7.
Thus Y is the greatest element of (., C). However, Y J{f(Y)} € .. Hence {(Y)€Y. Contradiction!

Errata Suppose that X doesn’t have any maximal element. VA € w, 3f(A) s.t. Va € A, a < f(A).

3.4 Filter

3.4.0.1 Def Let X be a set. We call filter of X any F C (X)) that satisfies
L F#0,0¢F.
2.VAe F, VBe Z(X),if AC B, then B € F.

3. V(A,B) e Fx F, ANB€ F.
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3.4.0.2 Example
IL.Lt YC X, Y #0. Fy :={Ae P(X)|Y C A} is a filter, called the principal filter of Y.
2. Let X be an infinite set. Fr,(X) :={A € Z(X) | X\A is finite} is a filter, called the Frechet filter of X.
3. Let (X, ) be a topological space, x € X. We call neighborhood of x any V € #(X) s.t.3U € 7, satisfying x € U C V.
Then V, = {neighborhoods of z} is a filter.

3.4.1 Filter Basis
Let X be aset, Z#C 2(X). If 0 ¢ # and V(By, B2) € %°, 3B € %, s.t. B C By () Bz, we say that 4 is a filter basis.

3.4.2 Generating Filter
If 2 is a filter basis, then F(#) :={A C X | 3B € B, B C A} is a filter.

3.4.2.1 Proof 0 ¢ F(A), F(#) # 0 since 0 # B C F(#). f Aec F(B), A € P(x)st. AC A, then 3B € &£ s.t.
BCACA, hence A’ € F(A).

If Ay and Ay are elements of F (%), then 3(By, By) € %%, s.t. By C Ay, By C Ay. Since 4 is a filter basis, 3B € 4 s.t.
B C B1(\B2 C A1) As. Hence A1 () As. Hence Ay () Az € F(AB).

3.4.3 Neighborhood
V e Z(X) is called a neighborhood of x if 3U € J st. x € U C V.

3.4.4 Neighborhood Basis
A, is a neighborhood basis of x iff

1. By CV,.
2.V eV, U e B, st. UCV.

3. Let (X,d) be a metric space, x € X. Ve > 0, let E(m,s) ={yeX|d@y) <e}
B(z,e) ={y € X | d(z,y) < e}

Then {B(z,e) | ¢ > 0}, {B(z,1) | n € N>1}, {B(z,¢) | e >0}, {B(z,2) | n € N>} is a neighborhood basis of x.
For example, V, [\ 7 is a neighborhood basis of x.
1. Let Y C X, Y #0. #={Y} is a filter basis.

2. Let (X, 7) be a topological space, x € X. If %, is a filter basis s.t. F(%,) =V, = {neighborhood of x}. Then we say
that £, is a neighborhood basis of x.

3.4.4.1 Remark of a Generating Method Let (X, 7) be a topological space, € X and %, a neighborhood basis of
x. Suppose that %, is countable. We choose a surjective mapping (B, )nen from N to A,.

For any n € N, let A, = Bo(\B1()---(1Br € Vi. The sequence (A,)nen is decreasing and {A, | n € N} is a
neighborhood basis of x.

3.4.4.2 Prop LetY and F be sets, g: Y — E be a mapping.

1. If F is a filter of Y, then
g+(F):={A e P(E):g A € F}

is a filter on E.

2. If & is a filter basis of Y, then

is a filter basis of E

F(g(B)) = g.(F(B))={AC FE:3Bec %,9*(A) D B}.
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3.4.4.3 Proof

1. E € g.(F) since g Y(E) =Y. @ ¢ g.(F) since g~} (@) = @.
If A€ g.(F)and A’ D A, then g7 }(A") D g7 (A) € F, s0 g~ }(A") € F. Hence A’ € g.(F).
If A; and A are element of gg(F). Then g='(Ay) € F,g ' (A2) € F. Hence g7 (A1 NAz) = g (A1) Ng ! (A2) € F.
So A1 QAQ S g*(]-')

2. Since ¢ is a mapping, and & ¢ B, we get & ¢ g(H). Since B # &, g(AB) # 2.
Let %, and %, be elements of A. There exists C' € B s.t. C C By N HBy. Hence g(C) C g($B1) N g(Hs), namely g(#
is a filter basis.

3. g(B) C Aiff BC g~ 1(A).

3.5 Limit Point and Accumulation Point

We fix a topological space (X, 7).

3.5.1 Def
Let F be a filter of X and z € X.
1. If V, C F, then we say that x is a limit point of F.
2. UV(A, V) e F x Vi, ANV # (), we say that x is an accumulation point of F.

3.5.1.1 Prop Let B be a filter basis of X, x € X, %, a neighborhood basis of x. Then x is an accumulation point of
F(PB)MtV(B,U) € B x B, BUU # 0.

3.5.1.2 Proof Since B C F(AB), B, C V., the necessity is true.
Sufficiency: Let (A,V)e F(#B) x V,. There exist B € B, U € B,,st. BC A UCV. Hence ) # BNU CAUV.

3.5.2 Closure

3.5.2.1 Def Let Y C X, Y # (). We call accumulation point of Y any accumulation point of the principal filter
Fy ={AC X |Y C A}. We denote by Y = {accumulation points of Y}. Note that z € Y iff VU € %,, YU # 0. By
convention ) := (). And we call it closure.

3.5.2.2 Prop LetY C X. Then Y is the smallest closed subset of X containing Y.

3.5.2.3 Proof Vzc X\Y there exists U, € V, (7 s.t. YU, = 0.
Moreover, Yy € Uy, U, € V, (7. This shows that Vy € U,, y ¢ Y. Therefore X\Y = Usex\w Uz € 7.

Let Z C X be a closed subset that contains Y. Supposed that 3y € Y\ Z.
Then U=X\Z € V,N7and UNY CUNZ =0. Soy ¢ Y. Contradiction! Hence Y C Z.

3.6 Limits of Mappings

3.6.1 Limit of Filter

Let (E,7g) be a topological space, f : Y — E be a mapping, and F be a filter of Y. If ¢ € F is a limit point of f.(F),
namely, V neighborhood V of a, f~1(V) € F, then we say that a is a limit of the filter F by f.

3.6.1.1 Remark Let (E,7g) be a topological space. f :Y — E be a mapping, and F be a filter of Y. If a« € E, is a
limit point of f.(F) = {A € E|f~'(A) € F}, namely, for any neighborhood V of a, f~1(V) € F, then we say that a is a
limit of the filter F by f.

3.6.1.2 Remark Let %, be a neighborhood basis of a. Then V, C f.(F) iff B, C f.(F).
Therefore, a is a limit of F iff for any B € %,, f~1(B) € F.

3.6.2 Convergent of a Mapping

Let (E,7) be a topological space. I C N be an infinite subset, x = (2,,)ner € E’. If the Frechet filter Fp,.(I) has a limit

a € E by the mapping = : I — E. We say that (z,,),cs converges to a, denote as a =  lim  x,.
nel,n——+oo
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3.6.2.1 Remark a= lim =z, iff for any B € %, there exists N € N, s.t. z,, € B for any n € N> .

nel,n—-+oo
Suppose that 7g is induced a metric d.
{B(z,e)le > 0}, {B(z, 2)|n € Noo}, {B(z,¢)le > 0} and {B(z, 2)|n € N5} are all neighborhood basis of a.
Therefore, the following are equivalent:

= lim =z,
nel,n——+oo

Ve >0,3IN €N, Vn € Isn, d(zn,a) <€

Ve>0,3IN eN,Vn € Isy, d(zy,a) <e¢

vk € N217 dN e N, Vn € NZN’ d(xn,a) <
o Vk € N>y, IN €N, Vn € N>y, d(xp,a) <

i

3.6.2.2 Remark We consider the metric d on R defined as V(z,y) € R x R, d(z,y) := |z — y|.
The topology of R defined by this metric is called the usual topology on R.

3.6.2.3 Theorem Let (7,),er € RY, when I C Nis an infinite subset. Let | € R, the following statements are equivalent.

1. The sequence (z,)ncr converges to [ in the topological space R.

2. limsup =z, = liminf =z, =1.
nel,n——+oo nel n—+oo

3. limsup |z, —1|=0.
nel,n—+oo

3.6.2.4 A More Powerful Version Let (X,d) be a metric space, let I C N be an infinite subset and (x,,)ner € X7.
Let | € X, the following statements are equivalent.

1. lim =z, =1
nel,n—+oo

2. limsup d(z,,1)=0.

nel,n—+oo

3.6.2.5 Proof (1) — (2). The condition (1) is equivalent to for any ¢ > 0, AN € N, Vn € Isn, d(zp,l) < €, hence

sup d(zn,l) < e, therefore, limsup d(x,,l) <e, we then obtain limsup d(z,,l) =0.
nel>n nel,n—+oo nel,n—+oo

(2) = (1). If ]\i,an sup d(zp,l) = 0, for any € > 0, there exists N € N, s.t. sup d(zp,!) < e. Hence Vn € Iy,
= >

nEIZN iEIZN
d(xn,,1) < e, since ¢ is arbitrary, (1) is proved.

3.6.2.6 Prop Let (X,7) be a topological space. Y C X, p € Y\Y. Then V,y = {VY|V € V,} is a filter of Y.

3.6.2.7 Proof Y is not empty, since otherwise Y = @.
XNY=Y€eV,yand 0 ¢ V,y sincepe Y.
Let VeV,and WCY,st. VAY CW. Let U=VUW\VNOY)) € Vp,and UNY =W, hence W €V, y.
Let (Vi, V3) € V2, (V) N(V:NY) = (Vi (Va) Y € Vi

3.6.3 Limit of Mappings

Let (X,7,) and (E,Tg) be topological spaces, Y C X, p € Y\Y, and f : Y — E be a mapping. If a is a limit point of
f«(Vpy), then we say that @ is a limit of f, when the variable y € Y tends to p, denoted as a = %}m f(p).
yeY,y—p

3.6.3.1 Remark If A, is a neighborhood basis of a, then a = %}m f(y) is equivalent to for any U € Z,, there exists
yeY,y—p
VeV,st. VONY C fFYU) (f(VNOY)CU).

3.6.3.2 Theorem Let (X,7x) and (E,7g) be topological spaces. Y C X, p € Y\Y, a € E. We consider the following
conditions.

Va= Il .

(i) a e fy)

. N . . _ . _
(ii) For any (yn)nen € Y, if Jm y, = p, then lim f (yn) = a.

The following statements are true:
e If (i) holds, then (ii) also holds.

e If p has a countable neighborhood basis, then (i) and (ii) are equivalent.
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3.6.3.3 Proof

1. For any U € V,,, 3N € N, s.t. Vn € Nxn, vy, € UNY. Therefore, V, vy C yu(Frr(N)). We then get fo(V,y) C
Felye(Frr(N))) = (foy)«(Frr(N)). (Infact, fi(y«(Frr(N)) = {F S E|f~H(F) C yu(Frr(N)} = {F € Ely~ (f 7' (F))
Fre(N)} = {F C E|(f oy) ' (F)) € Frr(N)} = (f 0 y)u(Frr(N)))

Condition (i) leads V, C fi(Vpv) € (f o y)« (Frr(N)).

2. Assume that p has a countable neighborhood basis, there exists a decreasing sequence (V;)nen € V', s.t. {V,|n € N}
forms a neighborhood basis of p.

3.7 Continuity

3.7.0.1 Def Let (X,7x) and (Y,7y) be topological spaces, f be a function from X to Y, € Dom(f). If, for any
neighborhood U of f(x), there exists a neighborhood V of x s.t. f(V) C U, then we say that f is continuous at z. If f is
continuous at any x € Dom(f), then we say that f is continuous.

3.7.0.2 Prop If f(x) and g(x) are continuous at xg, then f(x) £ g(z), f(z)g(x) are also continuous at x.

3.7.0.3 Remark

o Let HBy(y) be a neighborhood basis of f(z). If, VU € %y () there exists V € V, s.t. f(V) C U. Then we say that f is
continuous at z.

e We couldn’t write V. C f~1(U) or " f~1(U) is open” since f may not be a mapping.
e Suppose that X and Y are metric spaces. Then f is continuous at x iff

Ve > 0,36 > 0, s.t. Vy € Dom(f),d(y,x) < ¢ implies d(f(y), f(z)) < e.

3.7.0.4 Prop of Transitivity Let (X,7x),(Y,7y) and (Z, 7z) be topological spaces, f be a function from X to Y, g be
a function from Y to Z. Let « € Dom(go f). If f is continuous at z and ¢ is continuous at f(x), then go f is continuous at
x.

3.7.0.5 Proof Let U € Vyf@)). Since g is continuous at f(x), IW € Vi), g(W) C U. Since f is continuous at z,
AV eV, f(V) C W. Therefore, g(f(V)) C f(W) C U. Hence g o f is continuous at x.

3.7.0.6 Theorem Let (X,7.),(Y,7y) be topological spaces, f be a function from X to Y. Consider the following
conditions

1. f is continuous at x.
2. Y(2n)nen € Dom(f)N, if lim,, 1 o 2, = 7, then lim, 1 o f(2,) = f(2).
Then (i) implies (ii). Moreover, if z has a countable neighborhood basis, then (i) and (ii) are equivalent.
3.7.0.7 Proof (i)—(ii). Let (2y)nen converges to x. For any U € Vy(,),3V € V., f(V) C U. Since lim, 400 2n = 7,
there exists N € N s.t. ¥n € N>y, z, € V. Hence Vn € N>y, f(z,) € f(V) CU. Thus lim,, 1o f(z,) = f(2).
(ii)—(i). Under the hypothesis that x has countable neighbourhood basis. Actually we will prove NOT(i) — NOT(ii).
Let (Vi,)nen be a decreasing sequence in V, s.t. {V,, : n € N} forms a neighborhood basis of z. If (i) does not hold, then

U € Vi), Vn €N, f(V,) ¢ U. Pick z,, € V,, s.t. f(wn) ¢ U. VN € N,¥n € N>y, 2, € Vy. Hence (2,,),en converges to .
However, f(z,) ¢ U for any n. So (f(z,))nen does not converges to f(x). Therefore, (ii) does not hold.

3.7.1 Topology Basis
Let (X, 7) be a topological space, Z C 7. If any element of 7 can br written as the union of a family of sets in £, we say

that 4 is a topological basis of 7.

3.7.1.1 Prop Let (X,7) be topological spaces, 8 C 7. £ is a topological basis iff Vo € X, B, :={VeB:z€V}isa
neighborhood basis of x.

3.7.1.2 Proof "—=". Vx € X,%, C V,. Moreover, VU € V,,3V € 1,o € V C U. Since % is a topological basis of
7,AW € B, € W CV C U. Hence V, is generated by A,.
" LetUer. VeeUU€V,. SodV, € By,x €V, CU. Hence U C |J,c; Vo CU. Hence U = |,y V-

3.7.1.3 Lemma Let (X,7) be a topological space, V € Z(X). Then V € 7 iff Vo € V, V is a neighborhood of z.

c
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3.7.1.4 Proof 7—" follows by Def.
" Ve eV, 3B, eT,x € W, CV. Hence V =, o, Wo €7

3.7.1.5 Prop Let (X,7x) and (Y,7y) be topological spaces. By be a topological basis of 7y, f : X — Y be a mapping,.
The following conditions are equivalent:
1. f is continuous.

2. VU € Ty,f_l(U) €ETX.

3. YU € By, f~1(U) € 7x.

3.7.1.6 Proof

1. ()= (ii). Let U € 7y. Vo € f~1(U), f(z) € U. Hence U € Vy(,). Hence, there exists an open neighborhood W of z s.t.
f(W) C U. Since f is a mapping, W C f~1(U). Therefore, f~1(U) € V,. Since z is arbitrary, f~}(U) € 7x. (By the
lemma.)

2. (3)=(1). For any U € By s.t. f(x) € U, f~1(U) is an open neighborhood of z, and f(f~1(U)) C U.

3.7.1.7 Def Let X be a set, and let ((Y;,7;)):cr be a family of topological spaces. For any i € I, let f; : X — Y; be a
mapping. We call initial topology of (f;)ier on X the smallest topology on X making all f; continuous.

3.7.1.8 Remark If 7 is the initial topology of (f;)icr. Vi € I YU, € 7, f7*(U;) € 7.
If 7 C I is a finite subset, (U;)jes € Ije7;, then ﬂjejfj_l(Uj) e J.

3.7.1.9 Prop
# =1 () f;'(U;): ] C I finite, (Uj)jes € [[ 7
JjeJ jEJ
is a topology basis of the initial topology 7.

3.7.1.10 Proof First, ZC .
Let 7{subset V of X that can be written as the union of a family of sets in £}.

egpcT. XeBCT.
e 7' is stable by taking the union of any family of elements in 7’.

e If V; and V5 are elements of 7. Then V4 NV, € 7. In fact, V; and V5 are of the form of the union of some sets of 4.
The intersection of two elements of 4 is still an element of A

Astwn ol N sep)= U o

jed jeJ’ jesUJ

= N oy N Fopnr@p|nl () F10)

jeINT’ jeqng’ JEINT

where
U; jeJg\J
W; = U]’-, jeJN\J

u;nu;, jeJnJ.
So 7' is a topology making all f; continuous. Hence

rcr'cr - =1

3.7.1.11 Example Let ((Y;,7;))icsr be topological spaces, Y = [],.; Y; and 7; : Y — Y; be the projection mapping. The
product topology on Y is by Def the initial topology of (m;)ics.

3.7.1.12 Theorem Let X be a set, ((Y;,7:))icr be a family of topological spaces, ((f; : X — Yi))ier be a family of
mappings, and we equip X with the initial topology 7x of (f;)icr. Let (Z,7z) be a topological space and h: Z — X be a
mapping. Then h is continuous iff Vi € I, f; o h is continuous.
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3.7.1.13 Proof "—7.If his continuous. Since each f; is continuous, f; o h is also continuous.
"<=". Suppose that Vi € I, f; o h is continuous. Hence, YU; € 7, (f; o b)Y (U;) = h='(f; 1 (U;)) € 72. Let

B=1{ () f7(U;):J I finite, (U))jes € [[ 7
JjeJ iy

YU == e fj_l(Uj) € B, h1U)= ﬂjeJh_l(fj_l(Jj)) € 7z. Therefore, h is continuous.

3.7.1.14 Remark We keep the notation of the Def of initial topology. If Vi € I, %; is a topological basis of 7;, then

#:= 1 () f71(U;): J < I finite, (Uy)jes € [] %
jer jedJ

is also a topological basis of the initial topology.

3.7.1.15 Example Let ((X;,d;))} be a family of metric spaces, X =[]\, X;. We define a mapping

d: X x X — RZO
()7, (wi)7) — max di (7, ys).
d is a metric on X: If z = (x;)7,y = (v:)T, 2 = (2;)7, then
d(z, 2z = m?}](di(xh z;) < m[aﬁ(di(wi,yi) +d(yi, i)
1€(n 1€
< d(z,y) +d(y, 2).
T X = Xy . . .
Each n is continuous. Hence the product topology 7 is contained in 74.
()7 = i
Let = (x;)} € X,e > 0.
B.2) = {u = 0} s o) <
1€(n

n

B(z;,e) = ﬂ 7 Y(B(xi,€)) € T.
1 i=1

—.

3

Hence 7y = 7.

3.8 Uniform Continuity and Convergence

3.8.1 Diameter

Let (X,d) be a metric space. VA C X not empty, we define diam(A) := sup, ,)e a2 d(z,y), called the diameter of A. If
A = ¢, by convention diam(A) := 0. If diam(A) < +oo, we say that A is bounded.

3.8.1.1 Example d(z,y)=min{|jz —y|,1} and d(z,y) = 1_|~_x|;f‘y‘ are both bounded metrics.

3.8.1.2 Remark
e If A is a finite, then it’s bounded.

e If A C B, then diam(A4) < diam(B).

3.8.1.3 Prop Let (X,d) bea metric space, A C X,B C X, (x0,y0) € Ax B. Then diam(AJ B) < diam(A) +d(zo, yo) +
diam(B). In particular, if A and B are bounded, then A|J B is bounded.

3.8.1.4 Proof Let (z,y) € (AUB)2 If {x,y} C A, then d(z,y) < diam(A). If {z,y} C B, then diam(B) > d(z,y).
Ifx € A,y € B, then d(z,y) < d(x,z0) + d(xo, yo) + d(yo,y) < diam(A) + d(xo,yo) + diam(B). Similarly when z € B,y € A.

3.8.1.5 Example diam(B(z,7)) < 2r. If (y,2) € B(z,r), then d(y, 2) < d(y,x) +d(z,2) <r+7r = 2r.

3.8.2 Cauchy Sequence
Let (X, d) be a metric space, I C N be an infinite subset, (z,,)ner € X!, If
Ve > 0,3IN € N,diam({z, : n € Isn}) <e,

then we say that (z,)ner is a Cauchy sequence.
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3.8.2.1 Prop
1. If (z)ner converges, then it is a Cauchy sequence.
2. If (zpn)ner is a Cauchy sequences, {z,, : n € I'} is bounded.

3. Suppose that (z,)ner is a Cauchy sequence. If there exists an infinite subset J of I s.t. (z)nes converges to some
x € X, then (z,,)ner converges to x.

3.8.2.2 Proof
1. Let [ be the limit of (x,)ner. Ve > 0,3IN € Ns.t. {z,:n € I>n} C B(l,¢/2). Hence diam({z,, : n € I>n}) < e.

2. 3N € N s.t. diam({z,, : n € I>n}) < 1. Hence diam({z, : n € I}) is finite, since {z, : n € I} = {z, : n €
Iy }(finite) | {zn : n € I>n}(bounded).

3. Let ¢ > 0,3AN € N,diam({x,, : n € Isn}) <e/2.
Take ng € JZNCIZN'

Vn € Isn, d(2n, 2) < d(@n, Tn,) + d(Tpg, ) <

Hence (2, )ner converges to x.

3.8.3 Uniformly Continuous

Let (X,dx) and (Y, dy) be metric spaces, f be a function from X to Y. If Ve > 0,35 > 0 s.t.

V(z,y) € (Dom(f))? d(z,y) < & implies d(f(z), f(y)) <e,
namely

inf d(:}ggéd(f (x), f(y)) =0,

we say f is uniformly continuous.

3.8.3.1 Prop Let (X,dx) and (Y,dy) be metric spaces, f be a function from X to Y which is uniformly continuous.
1. If I C N is infinite, and (7, )ner is a Cauchy sequence in Dom(f)?. Then (f(x,))ner is a Cauchy sequence.

2. f is continuous.

3.8.3.2 Proof

1. Ve > 0,36 > 0s.t. Y(x,y) € Dom(f)?,dx(x,y) <6 — dy(f(z), f(y)) < e. Since (x,,)nes is a Cauchy sequence, IN € N
s.t. Y(n,m) € 12y, dx (@n, Tm) < 0. Hence dy (f(xn), f(zm)) < e. Therefore (f(zn))ner is a Cauchy sequence.

2. Let (,)nen be a sequence in Dom(f)Y that converges to x € Dom(f). We define (y,)nen as

x, 2||idn
Yn =
JL'n/Q, 2 | n.
Then (y,)nN converges to x.
Hence (yn)nen is a Cauchy sequence. Since f is uniformly continuous, (f(yn))nen is a Cauchy sequence in Y.
(f(Yn))nenn is odd = (f(2))neNn is odd converges to f(x).

This leads to lim,—, 1o f(zn) = f(z). Hence f is continuous at z.
3.8.4 Convergence

Let X be a set, Z C X, (Y,d) be a metric space, I C N infinite, (f,)ner and f be functions from X to Y, having Z as
their common domain of Def.

1. IfVa € Z, (fn(x))ner converges to f(x), we say that (f,)ner converges pointwisely to f.

2. If limy, 4 oo SUpP, ez d(fr(x), f(z)) = 0, we say that (f,)ner converges uniformly to f.
3.8.4.1 Theorem Let X and Y be metric spaces, Z C X, I C N infinite. (f,)ner and f be function from X to Y,
having Z as domain of Def. Suppose that

1. (fn)ner converges uniformly to f.

2. each f, ins uniformly continuous.

Then f is uniformly continuous.
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3.8.4.2 Notation f, =a", f=MWF,.

3.8.4.3 Proof Forn el let A, =sup,c,d(fn(z), f(z)),lim A, =0. Y(z,y) € Z%,Vn € I,

d(f(x), f(y)) < d(f(x), fu(@)) + d(fn(2), fa(y) + d(fa(y),d(y)) < 240+ d(fn(2), fa(y)),

inf sup d(f(z), f(y)) <24, +inf sup d(fn(z), fn(y)) = 0. (because f, is uniformly continuous.)
020 d(a,y)<6 020 d(a,y) <6

Hence 0 < infs50 Supy(, 4)<s A fn(2), fn(y)) < 2A,. Take lim,,, 1, by Squeeze Theorem, we get infs~o supy(, <5 d(f (), f(y)) =
0.

3.8.4.4 Theorem Let X be a topological space, Y be a metric space, Z C X, P € Z. Let (fn)ner, f functions form X
to Y, having Z as domain of Def. Suppose that

1. (fn)ner converges uniformly to f.
2. each f, is continuous at P.

Then f is continuous at P.

3.8.4.5 Proof Vn €I, let A, = sup,c,d(fn(), f(x)). Ve,3In € I, A, < 5. Since f, is continuous, U € V,, fn(U) C
B(fu(P), 5)-

Ve e UNZ f(U) C B(f(P)e), d(f(z), f(P)) <d(f(z), fu(@)) +d(fu(2), fa(P)) + d(fu(P), f(P)) <

3.8.5 Epsilon-Lipschitzian

In the study of metric spaces, an isometry is a function f : X — Y between metric spaces X and Y that preserves
distances exactly, i.e., for all z,y € X, we have dy (f(z), f(y)) = dx(z,y).

Isometries play a crucial role in understanding the structure of metric spaces, as they identify spaces that are ”essentially
the same” in terms of their metric properties.

When an isometry f is also bijective, it is called an isometric isomorphism, and the metric spaces X and Y are said to
be isometrically isomorphic. Such maps allow for perfect preservation of the metric structure.

However, in many contexts, exact preservation of distances is too restrictive. Instead, we may allow the distances between
points to be distorted by a controlled factor. This leads to the concept of an e-Lipschitzian function.

Let X and Y be metric spaces, f be a function from X to Y, e > 0. If Vz,y,d(f(x), f(y)) < ed(z,y), then we say that f
is e-Lipschitzian.

If 3¢ > 0 s.t. f is e-Lipschitzian, we say that f is Lipschitzian.

3.8.5.1 Remark If f is Lipschitzian, then it is uniformly continuous.

3.8.5.2 Example

1. Let ((Xj,d;))ier be metric spaces, X [[, X; where ¢ € I finite. d : X x X — Rxo,d((x;)ier, (i)ier) = max;er di(z4,95)).
Then 7; : X — X; is Lipschitzian. d;(x;,y;) = d;(mi(z), m:(y)) < d(z,y).

2. Let (X, d) be a metric space, d : X x X — R is Lipschitzian.

|d(z,y) — d(z’,y")| < 2max{d(z,2"),d(y, y")}.
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Normed Vector Space

4.1 Linear Algebra

Let K be a unitary ring.

4.1.1 Induced Morphism

Let M be a left K-module, and let = (2;);cs be a family of elements of M.
We define a morphism of left K-module as follows:

O : K®I — M, (ai)iej — Zaixi
il
Let M be a left K-module , I be a set, = (z;);e; € M'.
If . is injective, then we say that (z;);cs is K-linear independent.
If this mapping is surjective, then we say that (x;);er is a system of generators.
If this mapping is a bijection, then we say that (z;);cs is a basis of M.

1o
4.1.1.1 Example Let e; be the element (J; ;);cr where 6; ; = {07 lfj 2 Z,, then the family e = (e;)ier € (K®) is a
, ifj A1

basis of K%, (In this example M = K®T).

4.1.1.2 Proof ¢.((a;)icr) = . aie; = (a;)ier, S0 we = Idger is a bijection.
i€l
Here e; should be considered as a mapping from I to K that sends j € I to d; ;.

4.1.1.3 Remark LetI={1,2,...n}, z = (z;)ic; € M™, where n € N.
e z is linearly independent iff V(ay, ..., a,) € K™, a1x1 + ... + apxy, = 0 implies a; =ags = ... =a,, =0

e 1 is a system of generators iff any elements of M can be written in the form byxy + ... + by, (b1,...,b,) € K™. Such
expression is called a K-linear combination of (1, ..., 2y,).

4.1.2 Free K-Module and Finite Type

Let M be a left K-module.
If M has a basis, we say that M is a free K-module.
If M has a finite system of generators, then we say that M is of finite type.

4.1.2.1 Notation (z;)j., denotes (7;)ic(1,....n}-

4.1.3 Supplemented Submodule Theorem

Let K be a unitary ring and V' be a left K-module. W be a left sub K-module of V. Let (z;)I; be an element of W™.
a;)_, € (V/W)!, where (n,1) € N2. For any j € {1,...,1}, let 2,,4; be an element in the equivalence class «;.
J)j=1 +J J

If both (z;)I, and (Oéj)é':1 are linearly independent /system of generators/basis, then (z;)7%/ is also linearly indepen-

dent/system of generators/basis.

39
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4.1.3.1 Proof

n+l
1. Linearly independent: Let 7 : V — V/W x — [z] be the projection morphism. Suppose that (bz)f:f st > b =
i=1
n+l n+l l ’
0. Then 0 =m() biz;) = Y bim(z;) = D bnyjy.
i=1 i=1 j=1
Since (aj)é-zl is linearly independent, b,+1 = -+ = bp4; = 0; since (x;)_; is linearly independent. by = --- =b,, = 0.

2. System of generators: Let y € W, then 7(y) € V/W. So there exists (¢,i1,.-.,cn=1) € K', s.t. [y] = cpr1qnr1 +
vt Cn10ny = T(Cpp1Tppr + o F CopiZngr)-

Hence y — (cnt1Zn+1 + - + CnpiTnyy) € W, which means 3(ey,...,¢,) € K", sit. y — (Cpp1Tnt1 + - + CniTnyl) =
n+l

121 + .. + cpy. Therefore, y = > ca;.
i=1

3. Basis: Combine the two proofs above.

4.1.4 Steinitz Exchange Theorem

Let K be a division ring (any element of K\{0} is invertible). Let V' be a left K-module of finite type, and (7;)ie{1,....n}
be a system of generators of V. Then there exists a subset I of {1,...,n} s.t. (x;);cs forms a basis of V.

4.1.4.1 Proof (By induction on n) If n =0, then V = {0}. In this case ) is a basis of V. @y : K? — V.

Induction hypothesis: True for a system of generators of n — 1 elements.

Let (74)ieq1,....n} be a system of generators of V. If (2;);cq1,...,n} is linearly independent, then it is a basis.

Otherwise, 3(aq,...,a,) € K", s.t. (a1,...,a,) # (0,...,0) and a121 + ... + apx, = 0. Not loss generality, we suppose
an # 0, then z,, = —a; (a121 + .. + Gp_17n_1).

Since (xi)ie{l,wn} is a system of generator, any elements of V' can be written as byx1+..+ b,z = b1z +..+bp_1Tp_1 —
bpay(ar1my + .. + apn_12n-1) = (b1 — bpay, tar1)xr + .. + (bp—1 — bpa, tan_1)Tn_1

Thus (24)ie(1,....n—1} forms a system of generators. By the induction hypothesis, there exists I C {1,...,n — 1} s.t.
(2)iecs forms a basis of V.

4.1.4.2 Corollary Let K be a division ring and V be a left K-module of finite type. If (x;)?; is a linearly independent

family of elements of V' (n € N), then there exists I € N and (z,1;)}—; € V', s.t. (2;)} forms a basis of V.

4.1.4.3 Proof Let W be the image of ¢(z,)» K" =V, (a;)jy = >_ a;x;. It is a left sub K-module of V.
- i=1
Note that (z;)?, forms a basis of W.

Moreover, since V is of finite type, there exists d € N and a surjective morphism of left K-modules. v : K¢ — V. Since
the projection morphism 7 : V — V/W is surjective, the composite morphism K¢ — V — V/W is surjective. Thus V/W is
of finite type. There exists a basis (Oéj)é':1 of V/W.

4.1.5 Rank/Dimension of a Left K-module

Let K be a division ring and V' be a left K-module of finite type. We call rank of V' the minimal number of elements of
its basis, denoted as rkx (V') or simply rk(V).
If K is a field(commutative division ring), rk(V') is also denoted as dim(V) or dimg (V'), called the dimension of V.

4.1.5.1 Theorem Let K be a division ring and V' be a left K-module of finite type. Let W be a left sub K-module of V.
1. W and V/W are both of finite type, and rk(V') = rk(W) + rk(V/W).
2. Any basis of V has exactly rk(V') elements.

4.1.5.2 Proof Let (z;)!", be a basis of V, let m be the projection mapping.
1. In (m(z;)), we extract a basis of V/W, say (m(z;))\_;. For j € {I+1,...,n}, 3(bj1,...,bj1) € K! s.t. 7w(z;) =

l
> bjim(wi).
1=1

l n l n
Let y; = x; — > bjx; € W, n(y;) = 0. Forany x € W, 3(a;)]-; € K", z = > axi =y, a;z; + ., a;(y; +
i=1 i=1 i=1 j=I+1
l n l n
o bjaw) = >0 ajyj+ 3 (ai+ 0 ajbji)w.
i=1 j=l+1 i=1 j=l+1

l n n n
Since m(z) = > (ai+ Y, ajbji)m(z;) =0. SoVie {1,....,n}, a;+ >, a;b;; =0. Hencex = > a,y;. Hence W is
i=1 J=l+1 j=l+1 i=1+1
of finite type, and rk(V') > rk(W') +rk(V/W). Moreover, the previous theorem shows that rk(V) < rk(W') 4+ rk(V/W).
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2. We reason by induction on rk(V).

If rk(V) = 0, in this case V = {0}. Since {0} is not a system of generators, the only basis of V' is @. So the statement
holds.

Suppose that there exists e € V\{0} s.t. V = {Xe|\ € K}.
Then any basis of V' is of the form (ae);c(1; where a € K'\{0}.
For all A € V, there exists (A\a™!) € K s.t. (Aa~!)ae = Ae. Hence, rk(V) = 1.

Let (e;)7; be a basis of V. We reason by induction on m to prove that m = rk(V'). The cases where m =0 or m =1
have been proved respectively.

Induction hypothesis: True for a basis of fewer than m elements.

Let W = {)e1|X € K}. Let 7 be the projection mapping. Then (7(e;))", forms a system of generators of V/W.

If (a;)my € K™ tst. Y am(e;) =0, then Y aze; € W. Hence there exists a; € K s.t. Y a;e; —aje; = 0. Therefore,
i=2 i=2 i=1
a3 =--- = ay = 0. Thus, (7(e;)), is a basis of V/W.

By the induction hypothesis, tk(V) =m —1+1=m.
4.1.5.3 Prop If UV are two left K-modules, f : U — V is an isomorphism. Then rk(U)=rk(V).

4.1.5.4 Proof Let n=rk(U), m=rk(V). Since there exists f : K™ — U and g : K™ — V which are isomorphism, U =V,
so K" = K™ let f: K™ — K™ be the isomorphism. Since dim K™ = dim K™ + dim Ker(f) = dim K™, so n=m.

4.1.5.5 Prop Let K be a unitary ring and f : E — F be a morphism of left K-modules. Let I be a set, and let
x = (2i)ier € BT

1. If (z;)ers is linearly independent and f is injective, then (f(e;));er is linearly independent.
2. If (x;)ier is a system of generators and f is surjective, then (f(e;))iecr is a system of generators.

3. If (z;)ier is a basis and f is a bijection, then (f(e;)):er is a basis.

4.1.5.6 Proof sp(f(ei))iel = f @) (p(ei)iel'

4.2 Matrix

We fix a unitary ring K.

4.2.1 Column

Z1
T2
Let n € N and V be a left K-module. For any (z;)7,; € V", we denote by | . | the morphism Oz, K" = V.

Tn

T
T2
4.2.1.1 Example Suppose that V = K?(p € N). Then each x; € K? is of the form (z;1,2;2,...,2;,). Hence | .
In
ai; a2 -0 Qip
. az1 A2 - Agp
can be written
an1 Qp2 **+  App

4.2.2 Matrix

Let (n,p) € N2, We call n by p matrix of coefficient in K any morphism of left K-module form K" to KP.
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4.2.2.1 Example Denote by I,, the identity mapping K™ — K™. Then (e;)}, is a basis of K™ called the canonical basis
of K™

el 10 - 0
) o1 --- 0
Pley, =ldgn =1 . | = Co.
€n o o0 --- 1

Here, let e; follows the previous Def.

4.2.2.2 Example Let (z1,...,7,) € K". Denote by diag(z1,...,x,) : K™ — K", (a1,...,a,) = (@171, ..., anTp).

Tiep zy; 0 -+ 0
Toeg 0 22 --- O
It looks like: diag(x1,...,z,) = . =

4.2.3 Composition Laws on the Matrices

We denote by M, ,(K) the set of all n by p matrices of coefficient in K. For (n,p,r) € N3, We define M,, ,(K)x M, ,.(K) —
M, (K), (A,B) — AB := Bo A.

4.2.3.1 Example Let V be a left K-module Let n € N and = = (21,...,2,) € V™.
ar1 -0 Qin
az,1 - G2n
Consider a matrix A = . ) . € M, .(K).

ap71 DRI ap’n
A is a morphism of left K-module from K? to K™.
T

A ¢ | is defined as o, 0 A: KP — K" = V.

Tn

Let (by,...,by) € K7, A((by

=
\_/
S~—"

I
.Mﬁ

~
Il
—

bi(ai,l, ey a,;m).

ou(Albrs b)) = (é (a“,...,aim)):Xp:bicpx((ai,l,...,aim)):fzbiiai,jxj.

i=1 i=1  j=1
n
> a1,
T j=1
So A =
n
Tn
> piT;
j=1
big bia - biy
ba1  bao bor
Let B = . . ) . K" — K7
bn,l bn,2 o bmr
n
a1 - Qi big b1 - by > ani(bia,s ..., biy)
~
a1 -+ A2n b2,1 b2,2 te b2,r !
AB pu— p—
: : - : "
ap1 *° Gpnp bn,l bn,g s bn,r Z ap,i(bi,h ceey bi,r)
i=1
n n n
Z al,ibi,l Z al,ibi,2 s Z al,ibi,r
i=1 i=1 i=1
= : : : € M,,(K)
n n n
> apibin Yo apibio o Y apibiy
i=1 i=1 i=1

n
The coefficient at j** line and the k" column of AB is given by ;b k.
i=1

A matrix is in Z(K™, K™), and we can write

8 8 m
anﬁ ®) - 8];1 (p)
o . . o m.
L) - S=(p)

to denote the differential of f at p.
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4.3 Block Matrix

Matrix computation is a relatively complex operation. To simplify these operations, we introduce block matrices and
their operations. Please note that block matrices and their operations are not new types of operations, but a simplified form
of matrix operations.

What is a block matrix? Simply put, a block matrix is one where a matrix is divided into smaller matrices along rows
and columns. A matrix formed this way is called a ”block matrix.” For example, let:

1 2 -1 0
A=12 5 0 -2
3 -1 1 3

be a block matrix. If we write

An = (; f)) Apz = ( ) _02> Ay = (_31 }) Ap=(-1 3),
then matrix A can be written as:
A (An A12>
A1 Az’
This is a block matrix with 4 submatrices.
In general, for an m x n matrix A, if we first divide it into r blocks along rows and then into s blocks along columns, we
obtain a block matrix of size r x s. It is represented as:

All A12 e Als

A21 A22 o A2s
A= | . . .

Arl Ar2 e Ars

Note that A;; represents the submatrix at the (4, j) position of A. A is also referred to as a block matrix A = (A;;), with
the condition that these are block matrices.

4.3.1 Composition Laws

The addition, and scalar multiplication of block matrices are trivial.
4.3.1.1 Block Matrix Multiplication Block matrix multiplication is similar to standard matrix multiplication but
with additional considerations when dealing with blocks between matrices. For block matrices, the operation must satisfy

certain conditions to ensure validity. Let A = (A;j)rxs and B = (B;j)sx+ be two block matrices (note: the number of
columns of A equals the number of rows of B). We then define:

A A o Ags By By -+ By
Aor Asy -+ Ag, By By -+ By
Arl Ar2 e Ars le BsZ e Bst

The above block matrices satisfy the following conditions: For matrix A, the block at position (1,1), denoted Aqq, has
the row size my and column size nq, the block at position (1,2), denoted A;s, has row size ms and column size ng, and so
on. Similarly, for matrix B, the block at position (i,j), denoted B;;, has row size n; and column size ;. This type of block
matrix multiplication ensures the validity of the product of block matrices A and B.

If the product C = A - B is:

Cll Cl2 T Clt
C’21 C22 e C2t

C - . . . . )
Crl 01*2 T Ort

then each block Cj; is a matrix of size m; x [; and is computed as:

Cij = AinB1j + Ai2Baj + - - + Ais Bsj.

4.3.2 Determinant

4.3.2.1 Lemma Let A and C be matrices of dimensions m x n. Then, the block matrix determinant for the following
block structure is:

A B
o C

A O

|G:’ B C

\=|A|-c|, H=| \=|A|-c.
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4.3.2.2 Block Elementary Transformations Block elementary transformations are similar to ordinary elementary
transformations and include three types:

1. Interchange two block rows or two block columns of a block matrix.

2. Multiply a block row of a block matrix by an invertible matrix on the left, or multiply a block column by an invertible
matrix on the right.

3. Multiply a block row of a block matrix by a matrix on the left and add it to another block row, or multiply a block

column by a matrix on the right and add it to another block column.

4.3.2.3 Theorem Let A be an m x m invertible matrix, D be an n X n matrix, B be an m X n matrix, and C be an
n X m matrix, then

4 Dl jap-cap
If D is invertible (at this time A is not necessarily invertible), then
& Dl-ipja-Bopal

4.3.2.4 Proof Using the third type of block elementary transformation, multiply the first block row by —C A~! and add

it to the second block row to obtain
A B . A B
C D O D-CA'B )

The third type of block elementary transformation does not change the value of the determinant, from which the conclusion
can be drawn. Another conclusion can be similarly proved.
4.3.2.5 Remark When both A and D are invertible matrices, we get the equation
|D||A— BD™'C| = |A||D - CA™'B|.

This equation is called the determinant reduction formula. Because when the orders of D and A are not equal, it can be
used to reduce the calculation of high-order determinants to the calculation of low-order determinants.

4.4 'Transpose

We fix a unitary ring K.

4.4.1 Dual of a Left K-Module

Let E be a left K-module. Denote by EY := {morphisms of left K-modules from E to K}.

Y(f,9) €EV,let f+g: FE— K,z f(z)+g(x). (EY,+) forms a commutative group.

We define K x EY — EY (a,f) ~ foo f, where f, is defined as: EY — EV x +— za. Vo € E,X € K, (fa)(\x) =
f(Az)a = Af(z)a = A\(fa)(x). This mapping defines a structure of right K-module on EV.

4.4.2 Dual of a Morphism of Left K-Modules

Let £ and F be two left K-modules, ¢ : E — F be a morphism of left K-modules. We denote by ¢V : F¥ — EV the
morphism of right K-modules sending g € F¥ to gop € EV. Actually Va € K, g € FY, fo(¢Y(9)) = facgop = (facg)op =

¢ (ga).

4.4.2.1 Example Suppose that £ = K" F = KP.

big o by . n
p= |. Which sends (a1, ...,an) € K™ to (3 aibi, ..., Y aibip).
bml o bn,p =1 =1
Y1
Y2 p n
Let g € FV, thus g : K» — K. g is of the form | . [,y; € K. goy sends (a1,...,an) to Y (3 aibi ;)y;.
: j=1 i=1
Yp
P
. b1y,
j=1
P
b2,5Y;
j=1

gop=9g=

M=

bn,jYj
1

<.
Il
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4.4.3 Transpose

T
Assume that K is commutative. We denote by ¢, : (K?)¥ — KP?, | © | + (z1,...,2p). This is an isomorphism of
Zp
K-module.
For any morphism of K-modules, ¢ : K™ — KP?, we denote by ¢” the morphism of K-modules K? — K™ given by

oY ot

Vv
G — (™)
Lp in
KP - K"
¢
" is called the transpose of .
U
Let (y1,..,yp) € KP, 15 (1, p)) = |
Yp
3 b
U1 U1 bin - bip U1 Z; LiYi
el pP=E i fee= B
Yp Yp bpr - bnp Yp Zp: bn.iYi
i=1
p
> b1y
i=1 P P
Ln( ) - (Z bl,iyia"'a an,zyz) :yl(bl,lab2,17"'»bn,1)+y2(b1,2a~~abn,2)+~'+yp(b1,pa'“abn,p)~
» i=1 i=1
Zlbn,iyi
bi1,...,b,
(bra ) bir - ba
(b1,25---,bn2)
Therefore, 7 = . =1 : D] € Mpu(K).
: b c by
(bl,;m s 7bn’p) P b

4.4.3.1 Prop Let E, F and G be left K-modules. ¢ : F — F and ¢ : I — G be morphisms of left K-modules. Then
(Vo) =@ op¥.

4.4.3.2 Proof VfeGY, (¢ od)(f) =0 "W (f)) =9 (foh)=foop=fo(doy)=(dop)(f)

4.4.3.3 Corollary Assume K is commutative. Let n,p,q be natural numbers. A € M, ,(K), B € M, ,(K). Then
(AB)" = BTA".

4.4.3.4 Proof B"AT=A"oB" =1,0AY 01 o 0BV ot =10(BoA) ot =10 (AB)Y o1 = (AB)T.

q

4.4.3.5 Remark
1. For A € M, ,(K), one has (A™)” = A.

2. We have a mapping F — (EV)Y, 2 — ((f € EY) — f(x)). This is a K-linear mapping.
If K is a field and F is of finite dimension, this is an isomorphism of K-modules.

In fact, if e = (e;)! is a basis of E over K. For i € {1,...,n}, let €/ : E — K, Adje1 + ... + ey = N €¥ = (&) ) is
called the dual basis of e. (¢¥)V gives a basis of (EV)V. Hence E — EV is an isomorphism.

4.5 Linear Equations

We fix a unitary ring K.
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4.5.1 (Reduced) Row Echelon
For a = (a1,...,an) € K™"\{(0,...,0)}. Denote by j(a) the first index j € {1,...,n} s.t. a; # 0.

e
a
Let (n,p) € N*, A € M, ,(K), We write A as a column A = N —(ag),...,ag,i)) € KP.
o™
We say that A is of row echelon form if, Vi € {1,...,n — 1}, one of the following conditions is satisfied:
e ot =(0,...,0);
e () and a"tY are both non-zero, and j(aV) < j(al+1V).
If in addition the following condition is satisfied: Vi € {1,...,n},ifa®® # (0,...,0), then a(’() @y =1 andVs € {1,...,i—1}
aﬁli) =0, we say that A is of reduced row echelon form.
e
4.5.1.1 Prop Supposethat A= | : | € M,,(K) is of row echelon form. Then {i € {1,...,n}[a® # (0,...,0)} is of
a™
cardinal < p.
4.5.1.2 Proof Let k= Card{ic {1,...,n}a®? #(0,...,0)}, a**V) = . =a(™ = (0,...,0) and j(aV) < j(a?) < .. <
j(a®). Hence {1,...,k} — {1,...,p} is injective, so k < p.
ail e al[)
4.5.1.3 Def Let A= : ; € M, ,(K).
anl
Let V be a left K-module and ( b1, o by) eV
a11%1 + .. + a1pTp = by
We consider the equation A | : , which can also be written as
Op 121 + .. + GnpTp = by
The set of (z1,...,xp) € VP that Satlsﬁes (*) is called the solution set of (*).

4.5.1.4 Prop Suppose that A is of reduced row echelon form.
Let I(A) = {7’ € {17 cee 7n}|(ai,1a sy ai#’) 7é (07 cee 70)}7 JO(A) = {17 s 7p}\{j((ai,1a ceey alvp)”l € I(A)}

1. If Fi e {1,...,n}\I(A) s.t. b; # 0 then (*) does not have any solution in V?.
2. Suppose that Vi € {1,...,n}\I(A4), b; = 0. Then (x) has at least one solution.

A . Zj J € Jo(A)
Moreover, V7o(4) 5 yp, (2k)kedo(a) = (w1, .., 1p) With x; = bi— S aiz, 5 € (@i, aip) i€ I(A)
1eJo(A)

is an injective mapping, whose image is equal to the set of solution of (x).

4.5.1.5 Proof
1. Trivial.

2. Tedious and complex.

4.5.1.6 Prop Let m €N and S € M, ,(K).

T b1
If (x1,...,2p) € VPisasolutionof (x): A| : | =| 1],
Tp b
Ty b1
then (z1,...,2,) is a solution of (x)s: (SA)| : | =5 :
Tp by,

In the case where S is left invertible, namely there exists R € M,, ,,,(K) s.t. RS = I, € M,, ,(K). Then (x) abd (x)g has
the same solution set.
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4.5.1.7 Example 1 Let o:{1,...,n} — {1,...,n} be a bijection. Let P, € M, ,(K), P, : K™ — K", (A1,...,Ap) —
(A071(1)7' ..’Ao-fl(n)).

P,\P, =P, 0P, 1 —1,.

Let W be a left K-module, (y1,...,y,) € W™

Y1 Y1
P, = oP, : K" - K" —» W, (/\1,. . 7>\n) — ()\071(1), .. .,)\O.—l(n)) — )\O.—l(l)yl + ..+ )\O.—l(n)yn =
Yn Yn
)\190(1) + ..+ Anya(n)
h Yo (1) €1 €s(1)
Po’ = 7P0':PO'I7L:PO' = :
Yn Yo (n) €n €o(n)

4.5.1.8 Example 2 Let (ry,...,7r,) € K™, suppose that each r; is left invertible and s; € K, s.t. s;r; = 1.
diag(r1,...,m) : K™ = K™ (A1,..., An) = (M1711, ..o, Apry), diag(sy, . .., sp)diag(re, ..o, rn) + (A1, oo An) = (181, .00, Aps
()\181’1"1, ey )\nsnrn) = ()\1, ey >\n)

hn n
diag(ry,...,mn) | * | = | ¢ | odiag(ri,...,rn) : K™ = W, (A, ..., An) = (Ai71, o, AnTn) = AMriyn + o+ AnTnn.
Yn Yn
Y 19 rié1
diag(ri,...,m) | ¢ | = , diag(ry, ..., )1, =
Yn TnYn Tn€n

4.5.1.9 Example 3 Letie {l,...,n},c=(c1,...,¢n) € K", ¢, =0, S;c € M, ,(K).
Sie K™ = K™ (Atyee ) = (At Aty A + fl A Aists s An).
[ n ]
Since ¢; =0, 8; _cSic=1In, Sic| | = ¢ | 0Sic: K" = W.
Yn Yn
(A1, An) = (/\17~~-,/\¢+£:1 AjCjs oo An) = Ay +~-~+(/\z‘+£:1 AjCi)Yit o At = A1 (Y1 + 1) + A2 (y2 + cayi) +
ot Yi + o+ A (Un F Cryi)- " "

Y1 Y1+ c1y;
Sic| v | = Yi
1 0 -+ ¢ 0
01 -+ ¢ 0
Sieln=1¢ g 1 0
0 0 Cn 1

4.5.1.10 Def Let G,,(K) be the set of S € M,, ,,(K) that can be written as Uy...Un (by convention, S = I,, when N = 0),
where each Uj; is of one of the following forms.

1. P, where 0 € 6,, = {bijections from n to n}.
2. diag(ry,...,r,) where each r; € K is left K-module.
3. Sicwithie{l,....,n},c=(c1,...,cn) € K", ¢; =0.

Let p € N, we say that A € M, ,(K) is reducible by Gauss elimination if 35 € Gn(K), s.t. SA is of reduced row echelon
form.

4.5.1.11 Theorem Assume that K is a division ring. V(n,p) € N?, any A € M,, ,(K) is reduced by Gauss elimination.
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4.5.1.12 Proof (by induction)
The case when n = 0 or p = 0 is trivial.

A1
We assumen >1,p>1. Wewrite Aas | ¢ pg|, €K, BeM,, (K).
An
If Ay =... =\, =0, applying the induction hypothesis to B.
A1 0
(For Se Gp(K), SA=1S5] : SB | = ; SB |).
An 0

Suppose that (A1,...,A,) # (0,...,0), by permuting the rows, we may assume A\; # 0. As K is a division ring, by
multiplying the first low /\1717 we may assume A\; = 1.

1 uz e 'up
0
We add (—)\;) times the first row to the 7' row, to reduce A to the form C € My_1,-1(K),

C

(:U’Qa K3y - a:u‘P) € KPL
C2
Applying the induction hypothesis to C', we may assume that C is of reduced row echelon form | :
Cn
For i € {2,...,k}, we add —p;(,) times the it" row of A to the first line to obtain a matrix of reduced row echelon.
4.6 Normed Vector Space
4.6.1 Cauchy Sequence
Let (X,d) be a metric space. If (z,,)nen is an element of XM s.t.  lim sup  d(zpn,Tm) = 0, we say the (,)nen is

N—=+00 (p, m)EN
a Cauchy sequence. If any Cauchy sequence in X converges, then we say (X, d) is complete.
Let Cau(X,d) be the set of all Cauchy sequence in X. We define an equivalence relation ~ on Cau(X,d) as (z,)nen ~
(yn)nEN iff hI}rl d(xnvyn) = 0. Actually, hIE d(:l?n,ﬂin) =0; d(znayn) = d(ynyxn); If (In)nENa (yn)nGN and (Zn)nEN be
n—-+oo n—-+0oo
elements of Cau(X,d), 0 < d(xyn, zn) < d(@n, Yn) + d(Yn, 2n) < 0 (Here I omit some "lim” in convenience).

4.6.2 Completion
The completion of (X, d) is defined as X := Cau(X,d)/ ~

-

4.6.2.1 Example k[T] = (K[T],|"|r)-

4.6.2.2 Theorem The mappingd: X x X — Rso, ([z],[y]) = lim d(x,,yn) is well defined, and it is a metric on X.

n—-+o0o

4.6.2.3 Proof To check that d is well defined, it suffices to prove that ¥([z],[y]) € X x X, (d(@n,yn))nen is a Cauchy
sequence (since R is complete) and its limit does not depend on the choice of z and y. For N € N and (n,m) € N2 ,
one has d(zn,yn) < d(@n,Tm) + d(@m,Ym) + dYm, Yn), thus d(zn, yn) — d(@m, Ym) < d(@Tn,Tm) + d(Ym, yn), similarly,

d(l'm)ym) - d(xnvyn) < d(xnaxm) + d(ymvyn)~ Therefore, 0 < sup |d(xnayn) - d(l'maym)' < sup d(xnvxm) +
(n,m)EszN (n,m)EszN

sup  d(Yn,Ym ). Taking lim , we obtain that (d(xn,yn))nen is a Cauchy sequence and hence converges in R.
(n,m)EszN N—+o0

10" = (o Juere € ] o € o], then Tim_d(r, ) = 1m_d(y, 33) = 0, dn, )~ Al yf)] < dn,at) + (o),
n—+o00 n—-+00
1 1 i — / / = 1 =
taking nEToo’ we get ngrfw|d(mn,yn) d(x),,y.)] =0. So ngrfmd(xn,yn) hm d(xl,yh).

In the following, we check that d is a metric.

d([z],[y]) = 0 iff [2] = [y]. If [x] = [y] it is trivial, if d([z],[y]) = O, which actually means 2 ~ y, thus [z ] = [y].
Symmetry is trivial. If [z] [y] and [z] are elements of X. d([ 1, [2]) = EIE AT, 2n) < hm A, yn) + EIE d(Yn, 2n) =

d([z], [y]) + d([y], [2])-

4.6.2.4 Remark iy:X — X, a [(a,a,a,..)]. d(ix(a),ix (b)) = d(a,b). In particular, iy is injective, if ix (a) = ix (b),
then d(a,b) = 0, hence a = b.

4.6.2.5 Prop ix is dense in X. (The closure of ix(X) in X is equal to X).
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4.6.2.6 Proof Let [z] be an element of X. We claim that [z] = lim ix(z,).

n—-+oo

Forany N € N,0 < d(ix(zn),[z]) = lim d(zy,z,) < sup  d(zn,m), taking NliIJIrl , we get Nlirfrl d(ix(zn), [2]) =
o0 —+00 —+00

n—-+
(n,m) EN2ZN

4.6.2.7 Theorem (X,d) is a complete metric space.

4.6.2.8 Proof Let ([(™)])nen be a Cauchy sequence in X, where, for any N € N, (V) = (x,(lN))neN is a Cauchy sequence
in X.
Ve >0, 3Ny € N, s.t. V(k, 1) € N2y, d([z®)], [20)) = lim_d(a%?,2)) <

n—r-+o00
N) (N
VN €N, Ha( )EN d(x,(L ) a )) < N+1 for any (u,v )€N2>a( N
Let yy = x ) for any N € N. Without loss of generality, we assume that a( y<a(l)<....
Let € > 0. Take No €N, s.t. d([z®)], [z?]) < £, for any (k,1) € N2 and <.
Let (k1) € N2y d(yk.ur) = d(z . 2))). o(k) > No
Vn € N>y, dyk, u) < d(z (k()k),x%k)) + d(x%k),x%)) + d(xsf), 0 )< s+5+ d(xglk)@,(f))

a(l)
Taking nli}ﬂr_loo, get d(yk,y1) < e. Soy = (yn)nen is a Cauchy sequence.

Now we check that liIJrrl d([z™)], [y]) = o:

N+1

0 < d@",yn) < d@™ yn) + d(yn, yn), 0 < limsup lim _d(2"), ) < limsup(ghs + Jm d(yn, yn))

N—s+4o00 M—+00 N—+co

= lim sup hm d(yn,yn) = 0.

N—+4o0 "t

So lim lim d(xsl ),yn) = 0.

N —4o00 n—>+00

4.6.2.9 Example Let (K,]|-]|) be a valued field. It has an absolute value. There is a metric space with d(a,b) := |a — b,
then Cau(K) forms a commutative unitary ring:

b (an)neN ~ (bn)neN iff nll)rfoo(an - bn) =0.
o (an — by)nen € Caug(K) = {Cauchy sequences that converges to 0}, which is an ideal of Cau(K).

Hence K = Cau(K)/Caug(K) is a quotient ring of Cau(K). Absolute value extends to K : |[(an)nen]| = EIJIFI |ay,| that

forms an absolute value.

4.7 Norms

Previously, we have defined absolute value | - | on field K.

4.7.1 Def of Semi-norms and Norms
4.7.1.1 Def Let V be a vector space over K. We call a semi-norm on V any mapping || - || : V = R>¢ s ||s]| s.t.
1. Y(a,s) € K x V, ||las|| = |a| - ||s]|-
2. V(s,t) e VxV, |ls+t] <|sl|l + |l
If in addition || - || satisfies Vs € V, ||s|| = 0 iff s=0, we say that || - || is a norm and (V|| -||) is a normed vector space over
K.
4.7.1.2 Example
1. If we consider K as a vector space over K, then (K, |- |) forms a normed vector spaces over K.
2. Let (Vi, || ll1)s---s (Va, |l - [ln) be vector spaces equipped with semi-norms. Let V=V, & --- @&V, =V} X --- x V,,.

1
[l : V= Rso (21, 20) = maxieqr, . ny |illis |- llp 0V = Rso (21,0, 20) = ([21]]f + -+ [[zallh) 7.

There are semi-norms. They are norms if || - ||1,..., | - ||» are all norms.
4.7.1.3 Def Let (V,| -|) be a vector space over K equipped with a semi-norm, and W be a vector subspace of V.

1. The restriction of || - || : V' — R>o to W forms a semi-norm on W. It is a norm if || - || is a norm. || - || : W — Rx.

2. The mapping || - [[v/w : V/W = Rxo o infeeq |5
Remark ||[s]|v/w = infy,ew [|s + w]| is a semi-norm on V/WV.

Warning Even if || - || is a norm, [| - [|y;yw might only be a semi-norm.
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4.7.1.4 Prop Let (V]| ]|) be a vector space over K, equipped with a semi-norm. Then N={s € V | ||s|| = 0} forms a
vector subspace of V. Moreover, || - ||y/y is a norm.

4.7.1.5 Proof If (a,s) € K x N, then |las|| = |a| x ||s|| = 0, so as € N. If (s1,s2) € N x N, then 0 < ||s1 + s2|| <
[Is1]] + [|s2]| = 0, so s1 + s2 € N. So we proved that N forms a vector subspace of V.
M€K, a e V/N, |[Aally/n = infseq [[As]| = infoeq [A] X [[s]| = |A] ¥ [|a]lv/n-
lee + Bllvyn = infsears sl = nfey)caxs |2+ yll < nfeyycaxplllzl +lyl) = llellv/y +11Bllv/x-
Let o € V/N, s.t. [Ja|ly/n = 0 and we want to prove that o = [0].
Let s € a. V€ N, [|s+i]| < [[s|[+[|t] = [ls]| = [[(s+) +(=0)[| < s+t + ][ =t = [ls+2l. llallv/n = infren [s+2] = [Is].-
Hence |laf|v/n = ||s|| = 0. We obtain that a = N = [0].

4.7.1.6 Def Let (V] -|) be a vector space over K, equipped with a semi-norm. For any 2 € V, and r > 0, we denote by
B(z,r) the set {y € V||ly — x| <r}, B(x,r) theset {y € V | |y — x| < r}.

4.7.1.7 Remark If N={se V||s|| =0}, then z+ N C B(z,r), z + N C B(x,r), when r > 0.
VseN, |(x+s)—z||=0<r, <r whenr >0.
We equip V' with the topology s.t. YU C V, U is open iff Vx € U, 3r, > 0, B(z,r,) CU.

4.7.1.8 Prop Let (Vi,]-]1) and (Va,| - ||2) be vector spaces over K, equipped with semi-norms. Let f : V3 — V5 be a
K-linear mapping.

1. If f is continuous, Vs € Vi, if ||s]|1 = 0, then ||f(s)||2 = 0.

2. If there exists C' > 0 s.t. Vo € Vi, ||f(z)|]2 < C||z||1, then f is continuous.
The inverse is true when (a) | - | is nontrivial or (b) Va/{y € Val||ly||2 = 0} is of finite type.

4.7.1.9 Proof

1. Lemma: If (V,| - ||) is a vector space over K equipped with a semi-norm, then Ny := {s € V|]|s|| = 0} is closed.
Proof: Let s € VAN). Then |s|| > 0. Let ¢ = @, Vo € B(s,e), ||lz|l > |Isll = |ls—==z|l| > ||s]l —e =& > 0, so
B(s,e) C V\N”.H.

F7H(N).p,) is closed. Note that 0 € f~1(N|.j,), {0} € (V). 1)-
HARS NH||1’ s.t. Ve > 0, $+NHH1 C B(xz,¢), therefore, = € @
2. Let (x,)nen be a sequence of V7 that converges to some x € V; (this means lil}ri lxn — x|l1 = 0).
n—r+00
Hence limsup || f(zy) — f(z)||2 = limsup || f(z, — 2)||2 < limsup C||z,, — z||1 = Climsup ||z, — z|1 = 0.
n—-+oo n—-+4oo n—-+o0o n—-+oo
So (f(n))nen converges to f(x). Hence f is continuous at z.

Assume that | - | is non-trivial and f is continuous. Then f~!({y € Vz|||y|l2 < 1}) is an open subset of V; containing
0eW.

So there exists ¢ > 0, s.t. {z € Vi|||z]1 < e} C f~1({y € Val|lyll2 < 1}), namely, Vo € Vi, if ||z|; < e, then ||f(z)]2 < 1
Since | - | is nontrivial, Ja € K, ,0 < |a| < 1. We prove that Vz € V1, ||f(z)|2 < ﬁ”x”l

If ||| = 0, by (1) we obtain ||f(z)||2 = 0, ok.

Suppose that ||z|; > 0, then In € Z, s.t. ||a"z|1 = |a|™||z]; <& < |la"tz|1 = |a]* Yz

Thus [a"[[|/(2)ll2 = | f(@"@)]l2 < 1. Hence | f(@)]l2 < s = @=r x & < Hlaflu iy = L2kt

lal = elal~

4.7.1.10 Def Let (Vi,| - |]1) and (Va,]| - ||2) be vector spaces over K equipped with semi-norm. We say that a K-linear
mapping is bounded if there exists C' > 0, s.t, Va € Vi, || f(2)]2 < Cllz||y.
For a general K-linear mapping f : V1 — V5 we define

I £1] evsﬂp\bo(%) if FINY-p) S Nipps
= x 1|z

+00 if f(Ny1) € Ny
f is bounded iff || f|| < +o0. || f]| is called the operator semi-norm of f.
We denote by .Z(V1, Va) the set of all bounded K-linear mappings from V; to Va.

4.7.1.11 Prop .Z(V1,V,) is a vector subspace of Homg (V1, V2). Moreover, || - || is a semi-norm on .Z(V7, Va).
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4.7.1.12 Proof Let f and g be elements of £ (V1, V3).

If + gl = sup Hf(ﬂi‘)gﬁll(w)ﬂz < sup Hf(w)||”2;h\19(1)\|2 < sup Hf”(;ll)l\lz + sup ||.(‘J|(IIH)1||2 = IfIl + llg]l <
z€V1,||z|[1#0 z€V1,||z|l1#£0 z€V1,||lz|[1#0 z€V1,||z|[1#£0
~+o00.
Hence f + g € Z(V1, Va).
Mz
Let A€ K, Af - — Af(x), [|Af] = o Il — ||| ()] < +o0.
eV, ||x|[1>

Here I used the same method as in 4.6.1.5 Proof.

4.7.1.13 Remark If |||z is a norm, then || - || is a norm.

In fact, let f € Z(V1,V2). Suppose that 3z € Vi s.t. f(x) # 0. Since f(x) ¢ N, = {0}, we obtain [|z||; # 0 (4.6.1.8
Prop(2)).

Thus ||f|| > L&z - 0. Therefore, || - || is a norm.

REN

4.7.2 Banach Space

4.7.2.1 Idea A Banach space 4 is both a vector space (over a normed field such as R) and a complete metric space, in
a compatible way. Hence a complete normed vector space.
A source of simple Banach spaces comes from considering a Cartesian space R (or K™ where K is the normed field)

with the norm: .
(1, za)llp = (Z Iflep)

as we mentioned before.

However, the theory of these spaces is not much more complicated than that of finite-dimensional vector spaces because
they all have the same underlying topology. When we look at infinite-dimensional examples, however, things become trickier.
Common examples are Lebesgue spaces, Hilbert spaces, and sequence spaces.

In the literature, one most often sees Banach spaces over the field R of real numbers; Banach spaces over the field C of
complex numbers are not much different, since they are also over R. But people do study them over p-adic numbers too.

4.7.2.2 Def Let (V.| -|) be a normed vector space. If V is complete with respect to the metric V x V. — R,
(z,y) — ||z — ]|, then we say that (V.| -||) is a Banach space.

4.7.2.3 Theorem Let (V1,]-|1) and (Va,] - ||2) be vector spaces over K, equipped with semi-norms. If (Va,] - ||2) is a
Banach space, then (Z(V1,V2), || - ||) is a Banach space.

4.7.2.4 Proof Let (f,)nen be a Cauchy sequence in Z(V7, V3) converges to g. Vo € Vi, the mapping (f € £ (V1, V) —
f(z) is [|x[|1-Lipschitz mapping. | f(z) — g(z)ll2 = [(f — 9)(@)ll2 < |f — gllllx[lx

So (fn(2))nen is a Cauchy sequence, that converges to some g(z) € Vo. Thus we obtain a mapping g : V3 — Va.

We want to prove that g is an element of £ (V;, V3).

V(z,y) € Vix Vo, gl +y) = lim fulz+y)= lm fu(z)+ lim fa(y)=g(z)+g(y)

[fn(z) + faly) — g9(@) — g(@)|| < [l fal@) = g(@)]| + [ fa(y) — 9(y )|| (1) +o(1) = o(1), (n — +o0)

Ve Vi, VAe K, g(k) = D fu(h) = TmAfu(e), [Ma(r) — Ag@)] = Alfu(x) — @)l = o(1), (n— +o0)

So g(Az) = Ag(x)

Ve € Vi, lgla)ll = Tmfu(e)]| < lim | falle] (This is becase V(a, b) € V2, ||l ~ bl < fla — b])

Hence || fn(2)[| = [lg(@)[|] < [Ifn(z) = g(2)[| = o(1), g € £(V1,V2)

Ve >0,3N € N, V(n,m) € Now, [[fa—fmll < &, Vo € Vi, [|(fn—fn) (@)|| < ellzll, take lim , we get [|(frn—g)(@)l| < €|z,
so|fn—gl <&, VneN,n>N.

In fact, || fn(z) — g(@)[| < |fn(2) = ()] + [ fm(2) — g(@)]| < ellz]] + [ fm(x) — g(2)].

4.8 Differentiability

In this section, we fix a complete valued field (K, |- |). The absolute value is nontrivial.

4.8.1 Defs

4.8.1.1 Def Let X be a topological space and p € X.
Let K be a complete value field and (E, || - ||) be a normed vector space over K.
Let f: X — E be a mapping and g : X — R>( be a non-negative mapping.
We say that f(z) = O(g(x)),  — p, if there are a neighborhood V of p in X and a constant C' > 0, s.t. || f(z)|| < Cg(x)
for any = € V; f(z) = o(g(z)), + — p if there exist a neighborhood V of p in X and a mapping € : V. — Rxq, s.t.
lim e(x)=0and Vax €V, | f(z)] <e(x)g(x).

zeV,x—p
lim e(z) means V§ > 0, 3 open neighborhood U of p, U CV, and Vz € U, 0 < g(z) < 4.

zeV,x—p
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4.8.1.2 Def Let E and F' be normed vector space over K, U C E be an open subset, f : U — F be a mapping and
p € U. If there exists ¢ € L(E, F), s.t. f(z) = f(p) + ¢(x —p) + o(||lx — p||), z — p. We say that f is differentiable at p,
and ¢ is the differential of f at p.

f(x) = f(p) + o(x — p) + o(||x — p||), © — p means that there exists an open neighborhood V of p with V' C U, and a
mapping € : V — Rx, s.t. ilgés(x) =0 and that ||f(z) — f(p) — o(x — p)|| < e(z)||z — p|, Vz € V.

4.8.1.3 Prop If f is differentiable at p, then its differential at p is unique.

4.8.1.4 Proof Suppose that there exists ¢ and ¢ in Z(E, F), s.t. f(x) = f(p) + ¢(x —p) + o(||]z — p||) and f(z) =

fp) +¢(z—p)+ollz —pl)
(p—¢)(x—p)=o(]lr —p|]). Fe: V — R>p. V neighborhood of p, V C U.

o — vl = Sup [1¢% Hz’l)l(y)l\ < sup H(W*‘;ﬁ)‘(y)\l
II( )( \{)(\)l} II( YW vERMaHI=e
p— w AP [e=¥)(y
A# 0, T Tyl
Therefore, ||¢ — || = inf sup e 9wl < jnf sup g(y) = limsupe(y) =0

ly—pll

0>0 e E,0<|ly—plI<é 0>0yeE,0<|ly—pl<s y—p

Hence ¢ = .
4.8.1.5 Def Suppose that f is differentiable at p. We denote by d, f the differential of f at p.

4.8.2 Zero Mapping
f:U—=F, flz)=yo. Ve eU,VpeU, f(z)— f(p) =0=0+ o(]|z — p||). Hence d,f(x) =0, Vz € E.

4.8.3 Linear Mapping
Let fej(EVF) f({E) _f(p) :f(m_p)a hence dpf:f

4.8.4 Addition Mapping

A:ExXE—=E, (v,y) = z+y. [[(zy)lo = =]+ lyl- 2+l <zl + vl = Iz )l <20 y)lie. V(0 q) € E?
dip. A=A, dpgAlx ,y) Az, y) =z +vy.

4.8.5 Scalar Multiplication Mapping

m: KxE — E, (\,x) = Ax. Let (a,p) € K X E, \x —ap = Ax —az +ax —ap = (A —a)xr +alr —p) =
(A—a)p+ta(z—p)+ A =a)(z—p). [(A=a)(z—p)|=[A-alllz - p|| < max{|X—al, ||z —p[}* = o(max{|X —al, |z - p|]}).
When (A, z) = (a,p), ||(A—a,z —p)|li= — 0, the mapping ((u,y) € K X E) — up+ay € E is a bounded K-linear mapping,
because (p1 + p2)p + a(yr +y2) = (mp + ay1) + (p2p + ayz), bup + a(by) = b(up + ay), [|pp + ayll < |pllpl + lalllyll <
max{|ul, |yl }(al +lpll) = (1 ¥) |l (|a] + ||p||). Thus this mapping is an element of £ (K x E, E). Hence m is differentiable,
and d(q pym(p, y) = pp + ay, V(u, y) € K X E, d(gp)(m)(A —a,z —p) = (A —a)p+ a(z — p).

4.8.6 Theorem(Chain Rule Differentials)

Let E, F and G be three normed vector space, U C E, V C F be open subsets.
Let f:U — F and g : V — G be mappings s.t. f(U) C V. Let p € U. Assume that f is differentiable at p and g is
differentiable at f(p). Then g o f is differentiable at p and d,(g o f) = dg)g 0 dpf.

4.8.6.1 Proof Letx € U. By Def, f(x) = f(p)+dpf(x—p)+o(lz—pl), f(x)=f(p) = O(lz—pl). (gof)(x) =g(f(z)) =
9(f(p)) + dypyg(f(x) — f(p)) + o(|| f(x )) f@)) = g(f(p)) +drepa(f(z) — f(p)) + oz —pll) = 9(f(p)) + dspyg(dpf(z —

p) +olllz —pl)) +olllz = pl) = 9(f(p)) + dsp9(dpf(z — p)) + o([|lz — pl))
So g o f is differentiable at p, and d(go f) = ds)god,f.

4.8.6.2 Prop Letn be a positive integer, E, F},--- , F,, be normed vector spaces over K. U C E an open subset, p € U.
For any i € {1,--- ,n}, let f; : U = F; be a mapping. Let f: U — F = F} X --- X F}, be the mapping that sends « € U to
(fr(x), -+, fu(x)). We equip F with the norm | - || defined as follows: [|(y1,- - ,yn)|| = {max }||yz||

i€{l,---,n

Then f is differentiable at p iff each f; is differentiable at p. Moreover, when this happens, one has Vz € E, d,f(z) =
(dpfi(x), - s dpfu(2)).

4.8.6.3 Proof Suppose Vi € {1,---,n}, f; is differentiable at p. f(z) — f(p) = (f1(z) — fi(p), -, fu(x) — fu(p)) =
(dpfr(z = p), -+ dpfu(z = p)) +o(llz —pl)

Therefore, f is differentiable at p and dp () = (dp f1(-), -+, dpfn(-)).

m o F— Fy, (21, -+ ,2,) — x; is a bounded linear mapping. One has ||m;]] < 1.

m; is then differentiable at f(p). Hence m; o f = f; is differentiable at p.
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4.8.6.4 Def Let U be an open subset of K, and (F,||cd) be a normed vector space over K. If f: U — F is a mapping
that differentiable at some p € U. We denote by f'(p) the element d,f(1) € F, called the derivative of f at p.

4.8.6.5 Corollary Let U and V be open subsets of K, (F, |cd) be a normed vector space, f : U = K and g: V — F be
mappings s.t. f(U) CV. Let p € U. If f is differentiable at p and g is differentiable at f(p), then (go ) (p) = f'(p)g’'(f(p)).

4.8.6.6 Proof By Def,
dp(go f)(1) = dspyg(dp(f)(1)) = dpyg(f'(p) = dyg(f'(P)1) = f'(P)dspyg(1) = f'(p)g(1) = f'(p)g'(f(p))-

4.8.7 Corollary(Leibniz rule)

Let F and F be normed vector spaces over K, U C E an open subset, f : U — K and g : U — F be mappings, and
p € U. If both f and g are differentiable at p, then fg : U — F, x — f(x)g(x) is also differentiable at p, and VI € E,

dp(f9)(1) = dpf(Dg(p) + f(p)dpg(l).

4.8.7.1 Proof Considerm: K xF — F, (a,y) — ay. We have shown that m is differentiable, and d, , m(b, z) = by +az
fg is the following composite, U = K x F = F, x — (f(z),g9(z)) — f(z)g(x).

dp(f9)(1) = dp(m o h)(l) = dpym(dph(l)) = d(sp).gm)mdpf (1), dpg(1)) = f(p)dpg(l) + dp f (Dg(p)-

4.8.7.2 Corollary Let U be an open subset of K, f and g be mappings from U to K, and to a normed vector space F'
respectively. If f and g are differentiable at p € U, then

(f9)'(p) = f'(p)g(p) + f(p)d' (p)

4.8.7.3 Proof (fg)'(p)=d,(fg)(1)=d,f(1)g(p)+ f(p)dpg(1) = f'(p)g(p) + f(p)g'(p)-

4.8.7.4 Example f,: K — K, x — 2" is differentiable at any = € K. f!(x) = na"" L.

4.8.7.5 Proof f;:K — K is differentiable, Vz € K, d, f1 = f1.
filx) =d.f1(1) = f1(1) =1, Vz € K.
If f},(z) = na"~t, then f) 4 (x) = (fuf1) (x) = fu(x)fi(x) + fi,(x) fi(2) = 2™ + 2 fp(z) = (n+1)z"™

4.8.7.6 Prop Let E,F and G be normed vector space. U C E be an open subset, p € Z(F,G),peU. If f:U — F is
differentiable at p, then so is ¢ o f. Moreover, d,(po f) = pod,f.

4.8.7.7 Proof ¢ is differentiable at f(p), and ds) e = ¢.

4.8.7.8 Corollary Let E and F' be normed vector spaces, U C FE be an open subset, p € U. Let f : U — F and
g : U — F be mappings that are differentiable at p, (a,b) € K x K.
Then af + by is differentiable at p, and dy(af + bg) = ad, f + bd,g.

4.8.7.9 Proof af + bg is the composite U = F x F — F, z — (f(x),9(x)) — af(x) + bg(x).
llay + bz|| < alllyll + [bll|z]l < (laf + [b]) max{{lyll, [|]]}-

4.8.7.10 Def Let E be a vector space over K, and || - ||; and || - ||2 be norms on E. We say that || - ||; and || - ||2 are
equivalent if there exists constants C; > 0 and Co > 0, s.t. Vs € E, C1|s|l1 < ||s]l2 < Ca||s]|1-

4.8.7.11 Prop If || |1 and || - ||2 are equivalent, then Idg : (E,|| - ||1) = (E, || - ||2) and Idg : (E, || - |l2) = (E,] - ||1) are
bounded linear mappings. Moreover, || - || and || - ||2 defines the same topology on E.

4.8.7.12 Proof |s|l2 < Cys|ly < Cy'|s|l2. So these linear mappings are bounded. Hence Idg : (E, || - ||1) — (B, | - |2)
and Idg : (E,||-||2) — (B, ||-]l1) are continuous. So ¥ open subset of (E, || - ||2), Id5" (U) = U is open in (E, ||-||1). Conversely
if V is open in (E, || - ||1) then V =Id;" (V) is open in (E, || - ||2).

4.8.7.13 Remark If| ||y and || - ||2 are two norms on E that define the same topology on E, then they are equivalent.
(Under the assumptions that | - | is not trivial.)

4.8.7.14 Prop Let (E,| - ||g) and (F,| - ||r) be normed vector spaces, | - ||z and || - ||’= be norms on E and F that are
equivalent to || - |g and || - |, respectively. Let U C E be an open subset and f : U — F be a mapping. Let p € U. Then
f is differentiable at p with respect to || - |z and || - ||p iff it is differentiable with respect to || - ||’z and || - ||’=. Moreover the
differential of f at p is not changed in the change of norms from (|| - || g, | - ||r) to (|| - V&, Il - II'#)-

4.8.7.15 Proof f=Idrpo foldy.
dpf = df(p)IdF o dpf 9] dedU = IdF o dpf o IdE = dpf
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4.8.7.16 Theorem Let V be a finite dimensional vector space over K. Then all norms on V' are equivalent. Moreover,
V is complete with respect to any norms on V.

4.8.7.17 Proof Let (e;)" ; be a basis of V. Then the mapping V' — Rx>g, aje; + - - - + ape, — max{|ai|,- -, |an|} is a
norm on V.

Let || - || be another norm on V. One has |laie1 + - -+ anen|| < la|llen]|+- -+ lanlllen]] < (ledl]+-- -+ |len]]) max{|ai| +

o+ fan|}

We reason by induction that there exists C' > 0 s.t. max{|ai|,-- -, |an|} < Cllarer + -+ + aney||

The case where n = 0 is trivial(We just have a single norm on {0}).

Case where n = 1, |later|| = |a1]|e1]]- |a1] = |le1] ~t|arer]|-(It is complete since K is complete.)

Induction hypothesis: true for vector spaces of dimension < n.

Let W = {aje1 +- -+ an_1en_1|(a1, -+ ,an_1) € K" 1} equipped with the restriction of || - ||. The induction shows that

W is complete. Hence it is closed in V.
Let @ =V/W and || - || be the quotient norm on @, that is defined as Vz € Q, |laflg = irelf IIs]l.
sco

If sec V\W,3e>0,st B(s,e)\W=0.VteW,s+t¢ B(0,¢). Since otherwise —t € W () B(s, ¢).
Therefore, ||[s]]lq = tignva s+t >e>0

Applying the induction hypothesis to W, we obtain the existence of some A > 0 s.t. max{|ai|, - ,|an-1|} < Allare; +
<+ an_ien — 1|, for any (a1, -+ ,a,_1) € K" L.

Take s =aje; + -+ apn_16p—1 + aney, € V. Let a = [s] = aylen] € Q

A maxflasl, -+ Jan_a]} < lares + -+ an_ren_1ll = s — aneall < sl + lanlexl

lalle = lanlllen]llo = lan inf llen + ¢l

Take e), € V s.t. [e),] = [en] and |le, || < |/[en]llq + €.

llenll > |l[en]]l- Because of induction hypothesis, ||[e,]||@ > 0, thus |le,|| < B||[en]|l
sS=apne, +t €V witht € W.

IIs]l > ”[anen]HQ = |an|||[en]||Q > B_llanmen”

It aneal < gltlls sl > 18] = llanen] > 1t > 3Amax{lail, - |an—1]}-

If anen || > 2t sl > B~ anlllen]l > Z5-1t] > 254 max{laa], -+ , |an 1]}
We take C = min{B~"|je, ||, 4, 254}

Then ||s|| > Cmax{|ai], - ,|an|}.

4.8.8 Theorem: Differentiability Implies Continuity

Let E and F be normed vector space over a complete valued field, U C E be an open subset, and f : U — F be a
mapping. If f is differentiable at p € U, then f is continuous at p.

4.8.9 Proof

f(x) = f(p) +dpf(z —p) +o(llz —pl) = O(|z — pll) + f(p) = f(p) +o(1) = — p. So lim,—, f(z) = f(p).

4.9 Compactness

4.9.1 Quasi-Compact/Compact

Let X be a topological space, Y C X. We call open cover of Y any family (U;);er s.t. Y C |J U;. If I is a finite set, we
i€l
say that (U;)ier is a finite open cover. If J C I s.t. Y C |J Uj is a subcover of (U;)er.
jeJ
If any open cover of Y has a finite subcover, we say that Y is quasi-compact. If in addition X is Hausdorff, we say that
Y is compact.

4.9.1.1 Ultrafilter Let X be a set and F be a filter on X.
If there doesn’t exist any filter 7' of X s.t. F C F’, then we say that F is an ultrafilter.
Zorn’s Lemma implies that for any filter Fy of X, there exists an ultrafilter F of X containing Fp.

4.9.1.2 Prop Let F be a filter on a set X. The following statements are equivalent.
(1) F is an ultrafilter.
(2) VAC X, either Ac For X\ AeF.
(3) V(A,B) € Z2(X)?,if AUB€ F,then Ac For BEF.
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4.9.1.3 Proof From (1) to (2): Suppose that A € Z(X)st. A¢ Fand X\ A¢ F.

For any B € F. One has B[ A ¢ 0, since otherwise B C X \ A and hence X \ A € F, contradiction!

Hence F|J{A} generates some filter strictly larger than F, F cannot be an ultrafilter.

From (2) to (3): Suppose B ¢ F, then X \ B € F

(AUB)N(X\B)=A\BeF.SoAeF.

From (3) to (1): Suppose F' is a filter s.t. F C F'. Take A € F'\F. Then by X —A|J(X\A) € F. Hence X\A € F C F'.
0 =AN(X\ A) e F is impossible.

4.9.2 Equivalent Conditions for Quasi-Compactness
Let (X, 7) be a topological space. The following are equivalent:
1. X is quasi-compact.
2. Any filter of X has an accumulation point.

3. Any ultrafilter of X is convergent.

4.9.2.1 Proof From (1) to (2): Assume that a filter F of X doesn’t have any accumulation point.

Vo € X, 3A, € F, 3 open neighborhood V,, of z s.t. A,V = 0. Since X = |J V,, there is {z1,--- ,2,} C X, s.t.
zeX

X = UU Take B = ﬂA €F, BN X =B=0. Since BOV,, =0,Vie {1,--- ,n}.
i=1
From (2) to (3): Let f be an ultrafilter of X, by (2), there is © € X s.t. F|JV, generates a filter F'. Since F is an

ultrafilter 7 = F’ and hence V,, C F.

From (3) to (1): Let (U;);cr be an open cover of X. We suppose that (U;);c; does not have any finite subcover. For any
i €1,let Fy = X\U;. For any J C [ finite, Fy = (;c ; Fj = X\ U, U;j # 0. Let F be the smallest filter on X that contains
{F; | J € Ifinite}. Let F’' be an ultrafilter containing F. It has a limit point x. There exists i € I s.t. « € U;. Since U; is a
neighborhood of x, and V C F', we get U; € F'. This is impossible since F; € F'.

4.9.2.2 Def A filter F on X is called a Cauchy filter if V6 > 0, A € F s.t. diam(A4) < 4.

4.9.3 Heine-Borel Theorem in Metric Spaces
Let (X, d) be a metric space. The following statements are equivalent:

1. X is complete, and Ve > 0,3X. C X finite s.t. X =J,cy. B(z,¢), where B(z,¢) denotes the open ball centered at =
with radius e.

2. X is compact.

4.9.3.1 Lemma Let (X,d) be a metric space.

1. Let F be a Cauchy filter on X. Any accumulation point of F is a limit point of F.

2. X is complete if and only if any Cauchy filter of X has a limit point.

4.9.3.2 Proof of the Lemma

1. Let F be a Cauchy filter. Let z € X be an accumulation point of . For any € > 0, 3A € F with diameter < £. Note
that AN B(z,5) # @. Take y € AN B(x,5). Then, Vz € A, we have d(x,z) < d(x,y) +d(y, z). Since y € B(x, §), it
follows that d(z,y) < 5. Also, since A has diameter < 5, we have d(y, z) < §. Therefore, d(z,2) < § + § = . This
implies z € B(z,¢). Hence, A C B(z,€). So B(x,e) € F. This implies = € F.

2. ” < " Let (y)nen be a Cauchy sequence in X. Let F = {A C X | AN € N {any,zy41, -} € A}. This is a
Cauchy filter on X since lim,,_, o, diam{z,, Z,+1,--- } = 0. Hence F has a limit point € X. By Def, VU € V,,IN €
N {zn,zNn41, -} CU. So x = limy 00 Tp-
= Suppose that X is complete. Let F be a Cauchy filter. Vn € N>q, let A, € F s.t. diam(4,) < Take
T, € ey Ax € F. Then (J:n)neN>1 is a Cauchy sequence since Ve > 0, if we take N € N with 1 < ¢, then
Y(n,m) € N2N7 d(Tpy Ton) S + since {xn,zy} C An. Hence (z,)nen converges to some = € X. Note that z is a limit
point of F.

S|

4.9.3.3 Proof of the Theorem From (1) to (2): Let F be an ultrafilter. Then X = J .y B(x,¢) for some £ > 0.
Let {z1,x2, -+ ,2n} C X sit. B(z;,e) € F for all i € {1,--- ,n}. There exists some i € {1,--- ,n} s.t. B(z;,e) € F (By
induction). Thus, F is a Cauchy filter (for any § > 0, 3A € F of diameter < §). Since X is complete, F has a limit point.
So F is compact.

From (2) to (1): Let € > 0. One has X = J,cx B(w,¢). Since X is compact, 3X. C X finite s.t. X = ,cx. B(7,¢).
Compact — completeness is trivial.
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4.9.3.4 Prop Let f: X — Y be a continuous mapping of topological spaces. If A C X is quasi-compact, then f(A) CY
is also quasi-compact.

4.9.3.5 Proof Let (V;)ier be an open cover of f(A). Then (f~1(V;))ies is an open cover of A. Since A is quasi-compact,
there exists a finite subcover (Vi;)jes s.t. A CU;e; [ 1(V;,). This implies f(A) C Ujes Vi;- So f(A) is quasi-compact.

3

4.9.3.6 Prop Let X be a topological space and A C X be a compact subset. For any closed subset F' of X, AN F is
quasi-compact.

4.9.3.7 Proof Let (U;)icr be an open cover of ANF. Then (U;)ier |J(X \ F) is an open cover of A. Since A is compact,

there exists a finite subcover (Uj)jes s.t. A C U;¢;(U;) U(X\F). This implies ANF C ;¢ ; Ui;. So ANF is quasi-compact.

4.9.3.8 Prop Let X be a Hausdorff topological space. Any compact subset A of X is closed.

4.9.3.9 Proof Letxz e X\ A. Foreveryy € A, there exist open subsets U, and V;, s.t. y € Uy, x € V,,, and U, NV, = @.

Since A C U, Uy, there exists a finite subcover {Uy,,Uy,, -+, Uy, } € Ast. AC Ui, U,

Let U =, Uy, and V =i, Vy,. These are open subsets.
Moreover, ACU,z€V,andUNV ={J._,(U,, NV) =2
In particular, z € V C X \ A. Consequently, X \ A is open.

4.9.3.10 Prop Let X be a Hausdorff topological space, and A and B be compact subsets of X, A(|B = (. Then there
exist open subsets U and V of X st. ACU, BCV,andUNV =@.

4.9.3.11 Proof We have seen in the proof of the previous Prop that for every x € B, there exist U, and V, open s.t.
ACUg, x€Vy,and U, NV, = @. Since B C |J,cp Vz, there exists a finite subset {x1,--- 2} C Bs.t. B C UL, Va,. We
take U =i, Uy, and V =, Vy,. Clearly, ACU, BC V,and UNV = .

4.9.4 Cantor’s Intersection Theorem

Let (X, 7) be a Hausdorff topological space. If (A, )nen is a sequence of compact subsets of X s.t. Ag D A3 D Ay D -+,

then M), oy An # 9.

4.9.4.1 Proof Suppose that [, .y An = 3. Then Ay C J,cn(X \ An).
Since Ag is compact, there exists N € N s.t. Ag C UTZ:[:O(X \A,) =X\ ﬂﬁf:o A, =X\ An.
So Ay = @. (Since Ay C A4 C X\ An).

4.9.4.2 Prop We fix a complete value field (K, |-|). Let (E, |- ||g), (F, |- ||r) be normed vector spaces over K. Assume
that E is finite dimensional. Then any K-linear map ¥ : E — F' is bounded.

4.9.4.3 Proof Let (e;)]; be a basis of E over K. Use 4.7.7.16 Theorem: norms on E are equivalent.
V(ai,...,an) € K,|lare1 + ... + aney||g = max{|ai],...,|an|}-

Then b; = a1e; + ...+ aneyp.

@)l = lar¥(er) + ...+ an¥(en)|r < ZI%III‘I’ eillr < (Z [ (e ||F> 16| 2-
i=1

4.9.5 Sequentially Compact

Let (X, 7) be a topological space. If any sequence in X has a convergent subsequence, we say that X is sequentially
compact.

4.9.5.1 Example By Bolzano-Weierstrass, any bounded sequence in R has a convergent subsequence. So any bounded
and closed subset of R is sequentially compact.

4.9.5.2 Theorem Let (X,d) be a metric space. Then the following statements are equivalent:
1. (X,d) is compact.

2. (X,d) is sequentially compact.
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4.9.5.3 Proof 1 — 2 Let (z,)nen be a sequence in X. Assume that no subsequence of (z,) converges in X. Vp € X,
there exists €, > 0 s.t. {n € N|d(p,x,) < €,} is finite.
This is true, otherwise we can construct a strictly increasing sequence {ng}ren s.t.

1
Vk € N, 3z, s.t. d(p,z,) < T which implies z,, — p.

Since X is compact, then N = Ule{n e N, d(p;, zn) < €p;}, which is finite, leading to contradiction.

2 — 1 We show that (X, d) is complete. Let (x,,) be a Cauchy sequence. By (2), it contains a convergent subsequence.
Therefore, by a fact proved before (2.7.1(4) Prop), (z,) must converge to the same limit. Hence, (X,d) is complete. By
implying 4.8.3 Heine-Borel Theorem in Metric Spaces, we only need to prove that it’s covered by finitely many balls
of radius e.

If X is not covered by finitely many balls of radius ¢, then we can construct a sequence (z,) s.t. n+1 ¢ | B(z,§) for
any subsequence of this is not Cauchy (not convergent), which leads to contradiction.

4.9.6 Locally Compact

Let X be a Hausdorff topological space. If for any = € X there exists a compact neighborhood C,, of z in X, we say that
X is locally compact.

4.9.6.1 Remark Locally compact # compact; compact — locally compact.
4.9.6.2 Example R is locally compact, since C, = [z — 1,2 + 1] is a compact neighborhood of x.

4.9.6.3 Prop Assume that (K| -]) is a locally compact non-trivial valued field. Let (E,|| - ||) be a finite dimensional
normed K-vector space. A subset Y C E is compact if and only if it is closed and bounded.

4.9.6.4 Proof (—)LetY C X be compact. Then Y is closed (4.8.5.2 Theorem). Moreover, Y C |J, cy., B(0,n). We
can find finitely many positive integers n1,...,ng s.t. ¥ € B(0,n1)U. ..U B(0,n%) € B(0,ny), hence Y is bounded.

(<) Let (e;) be a basis of E. Again, we assume |laje; + ... + aqgeq| = max{||lai],...,|laq]|}. We only need to prove
sequential compactness by the theorem proved before.

Let (x,) = ( %n)el +...4 a&n)ed). Since Y is bounded, for m € {1,...,d}, the sequence (agn)) is bounded. In particular,
we find M > 0 s.t. |a§n)| < M for alli € {1,...,d}. Since (K, |-|) is locally compact, there is a compact set Cy of K that is
a neighborhood of 0. Let € > 0, B(0,€) C C. Since K is not trivially valued, there exists a € K s.t. |a| > L.

Then B(0, M) C aC. C C K is compact. We have a K-linear mapping K — K y + ay, this mapping is bounded,
hence continuous, hence aC' is compact (the image of C through a continuous mapping). B(0, M) C aC is a closed subspace
of a compact.

So it is compact — it is sequentially compact.

Therefore, we can find I, ..., I; that are infinite subsets of N, with Iy D Is D ... D I, s.t. (agn))neli converges. They
converge to some a; € K. It follows that our original sequence has a convergent subsequence converging to aije; + ...+ aqeq-
So Y is sequentially compact.

4.9.7 Extreme Value Theorem

Let X be a topological space and f : X — R be a continuous mapping. If Y C X is a non-empty quasi-compact subset,
then there exists a € Y and b € Y s.t. for all z € YV, f(a) < f(z) < f(b). Namely, the restriction of f to Y attains its
maximum and minimum.

4.9.7.1 Proof f(Y) C R is a compact subset since Y is quasi-compact and R is Hausdorff (4.8.3.4 Prop). Moreover,
since R is locally compact, f(Y) is bounded and closed. Note that there exists sequences {d, }nen and {e,}nen in f(Y)
that tend to sup f(Y") and inf f(Y") respectively. Since f(Y) is closed, sup f(Y) and inf f(Y) belong to f(Y). So f(Y) has a
greatest and a least element.

4.10 Mean Value Theorems

4.10.1 Theorem (Rolle)

Let a and b be real numbers s.t. a < b. Let f : [a,b] — R be a continuous mapping that is differentiable on ]a,b[. If
f(a) = f(b), then there exists ¢ €]a, [ s.t. f'(c) = 0.
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4.10.1.1 Proof Since [a,b] is compact, f attains its maximum and minimum. Let M = max f([a, b]), m = min f([a, b]).
Let I = f(a) = f(b).

If M #1, there exists a <t < bs.t. f(t) =M. Then, f(t+z) = f(t)+ f'(O)x+o(|z|), [flt—=z)=f()—f({t)x+o(z]).
So 0 < (f(t+x)— f)(f(t —x) — f(t)) = f(t)%2% + o(|z|?) Taking the limit when z — 0, we get f’(t) = 0.

If m # 1, then any ¢ €]a, b s.t. f(t) = m satisfies f/(t) = 0.

If m=1= M, {is constant, so Vt €]a,b[, f'(¢t) = 0.
4.10.2 Theorem (Mean value theorem, Lagrange)

Let a and b be two real numbers, a < b. Let f : [a,b] — R be a continuous mapping that is differentiable on |a, b[. Then
there exists t €]a,b[ s.t. f/(t) = W.

4.10.2.1 Proof Let g: [a,b] = R be defined as g(z) = f(z) — W(m —a). Then,

g'(x) = f'(z) - T b—a

By Rolle’s theorem, there exists ¢t €]a, b[ s.t. ¢'(t) = 0, that is,

f(b) = f(a)
p) —
4.10.3 Theorem (Mean value inequality)
Let a and b be two real numbers, s.t. a < b. Let (E,|| - ||) be a normed vector space over R. Let f : [a,b] — E be a

continuous mapping s.t. f is differentiable on ]a,b[. Then,

1£(6) = f(a)l < sup ||f'(2)]|(b—a)

z€la,b

4.10.3.1 Proof Suppose that sup,e), o [|f/ ()] < +o00. Let M € R s.t. M > sup,ejq |/ (z)|l. Let J = {z € [a,b] |
Yy € [a,z], || f(y) — f(a)|| < M(y —a)}. By Def, J is an interval containing a, so J is of the form [a, | or [a,c[. Since f is
continuous, by taking a sequence (¢, )nen in [a, ¢[ that converges to ¢, we obtain

1#0) = f(@)l = Tim_lf(ea) = f(@)| < lm_M(cn —a)

—+

Hence, ¢ € J, namely J = [a, ¢].

We assume that ¢ > a. We will prove that ¢ = b by contradiction.

Suppose that ¢ < b. (Attention: This is a bit imprecise, but the correct proof is to do something similar to this twice,
which is a bit lengthy.) Vb €]0,b — ¢[, ||f(c+b) — f(o)|| = ||h x f'(c) + o(R)|| < |If' ()|l x h + o(h) h — 0. Since
M > ||f' (o), 3ho > 0(ho <b—c)s.t. YO < h < hg, ||f(c+h)— f(c)]] < Mh since |lo(h)|| < (M — ||f'(¢)||) x h. Hence

[f(c+h) = fla)ll <[+ h) = fll +]f(e) = fla)l < M(c+h —a)

So, ¢+ hg is in J, a contradiction.

4.10.4 Intermediate Value Theorem
Let I be an open interval in R and f : I — R be a differentiable mapping, then f(I) is an interval.
4.10.4.1 Proof Let z and y be two elements of f(I) with  # y. Let a and b be elements of I s.t. x = f(a), y = f(b).

Without generality, we suppose a < b. Let z € Rs.t. (z —z)(z —y) < 0.
We conduct by induction three sequences (an)nen, (bn)nen, and (¢p)nen s.t.:

1. a:ao,boib,C():aTH)atto.

2. If a,, b,, c, are constructed, satisfying ¢, = % an +by), (2= an)(z —b,) <0, we let (ant1,bn+1) = (an,cn) if
(Z_f(an))(z_f(cn)) <0, (a7z+1a b7z+1) = (Cna bn) if (Z_f(an))(z_f(cn)) >0 (in this case (Z_f(cn))(z_f(bn)) < O)

The sequence (an)nen, (bn)nen are strictly increasing/decreasing and bounded, hence converges to some [ €]a, b[, m €]a, b].
Note that |b, — a,| = 5 |b—a] = 0 (as n — 400), so | = m.

By (z— f(an))(z— f(bn)) < 0, we obtain by letting n — 400 that (z — f(1))(z — f(I)) < 0, which implies z € f(I). (Using
dichotomy.)

4.10.5 Theorem (Darboux)
Let I be an open interval of R and f : I — R be a differentiable mapping. Then f/(I) is an interval.



4.11. FIXED POINT THEOREM 59

4.10.5.1 Proof Consider the following mappings:

(@@ oy,

qg: [a,b] — R, 9(93) = {f/(a;)a Tr=a

(0~ () b
hilab =R, hz)={ b= 7
Sy w=b
f(z)—

g and h are continuous, and T{{(‘l) = f'(a) + o(1) as x — a. So g([a,b]) and h([a,b]) are intervals.
Moreover, by the mean value theorem, g([a,b]) C f/(I) and h([a,b]) C f'(I). So {f'(a) — f'(b)} < g([a,b]) Uh([a,b]) C
f{).
Note that g(b) = h(a), so g([a,b]) U h([a,b]) is an interval. Hence f/(I) is an interval.

4.11 Fixed Point Theorem

4.11.1 Def of Fixed Point and Contraction

Let X be a set and T': X — X be a mapping. If there exists z € X s.t. T'(z) = x, we say that = is a fized point of T.
Let (X,d) be a metric space, and T : X — X be a mapping. If there exists ¢ €]0,1[ s.t. T is e-Lipschitzian,
cd(T(z),T(y)) < ed(x,y)), then we say that T is a contraction.

4.11.2 Theorem (Fixed Point Theorem)
Let (X, d) be a complete non-empty metric space, and T : X — X be a contraction. Then T has a unique fixed point.

Moreover, for any xg € X, the sequence (x,,)nen defined by x,+1 = T'(z,) converges to the fixed point.

4.11.2.1 Proof If p and ¢ are two fixed points of 7', then

d(p,q) = d(T'(p),T(q)) < ed(p,q)

for some 0 < € < 1, hence d(p,q) = 0.
Let g € X, 2, = (T o---0T)(x0) (with n applications of T), 2,11 = T(zy).
For n € N, d(pn, Tny1) < e"d(xo,x1).
For any N € N, ¥(n,m) € N2, n < m,

m—1 m—1 n
g
d(xnaxm) < kz_: d(xkvkarl) < kz_: Ekd(xovxl) < 1_€d(:v0,x1)

So limy — 00 SUP,, meNn<m<N d(zpn,zm) = 0.
(Zn)nen is a Cauchy sequence, hence it converges to some p € X. d(T(p),p) = lim,— 00 d(T(xy),2,) = 0 since d :
X x X — Ry>q is continuous.
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Higher differentials

5.1 Multi-linear mapping

Let K be a commutative unitary ring.

5.1.0.1 Def LetneN, Vi,...,V,, W be K-modules.

We call n-linear mapping from V; x --- x V,, to W any mapping f : Vj; x --- x V, — W st. Vi € {1,...,n},
V(Z1y oo X1y i1y e ey ) € Vi X oo X Vimg X Vg X -+ XV, the mapping f(@1,...,%i-1,, Tig1y..,Tn) : Vi = W
is a morphism of K-modules.

We denote by Hom(")(Vl X + -+ X V,,, W) the set of all n-linear mappings from V; x --- x V,, to W.

5.1.0.2 Example K x K — K, (a,b) — ab is a 2-linear mapping (bilinear mapping).
5.1.0.3 Remark When n =0, Hom™ (V; x --- x V,,, W) is considered as W by convention.
Hom™ (Vy, W) = Hom(V;, W) = {morphisms of K-modules from V; to W}

5.1.0.4 Prop Suppose that n > 2. For any i€ {1,...,n— 1},
Hom™ (V; x -+ x Vo, W) = Hom ™ (V; x -+ x Vi, Hom" D (Viq x -+ x Vi, W))

fe(z,.m) = (@i, xn) = flon, .0 20)))

5.1.0.5 Proof The inverse of ® is given by
g € Hom®@(V; x -+ x Vi, Hom™ ™ (Viyq x -+ X Vi, W))

(X1, yxp) EVI X o x V= g, o, 2) (@i, - -, )

5.1.0.6 Remark Hom™ (V; x ---x V,,, W) is a sub-K-module of W"1**Ve and & is an isomorphism of K-modules.

5.2 Operator norm of multi-linear mappings

5.2.1 Bounded n-linear Mappings

5.2.1.1 Def Let (K,|-]|) be a complete valued field. Let Vi,...,V,, and W be normed vector spaces over K.

We define || - || : Hom™ (Vy x - -+ x V,,, W) — [0, +-00] as
||f|| — sup ||f(1’1,,$n)||
@1rzn)eVixoox Vo 1T [l

If ||f|| < +oo, we say that f is bounded. We denote by £ (V} x --- x V,,, W) the set of bounded n-linear mappings
from Vi x --- x V,, to W.

5.2.1.2 Theorem Foranyic {1,...,n—1},if f € L™ (V; x ---x V,,, W), then the (n-i)-linear mapping

fi(xla ey Ti—1, T4, ) : (xi—&-l; s axn) — f(xlv ey L1, Ty L1y - - 7xn)
belongs to 2" (Viy1 X --- x Vi, W).
Moreover,
||f|| — sup ||f(331,,l'“)||
(T15eeesTn ) EVI XX Vyy |zl - - [l
2 £0, Vi

60
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5.2.1.3 Proof Let (zi11,...,2n) € Vigr X - X Vi, [[ (1, yan) | < FI- ol oo llznll = AUl oo () -
@il -zl So || f(z, ..o 2] < Hf||”'fl|$1|| o [EA
If we define |[£]1 = Sup(ey...oevi x s L2 then [ < 7]
x;#0,V5<i
Conversely, for any (x1,...,2,) € Vi x -+ x V,, s.t. x; # 0.
1f(@1, .zl S f(@a, i I @il [z ]l-
Hence, || f|| = |hf(11, o)l o (@1, | < I

wiffflwnll = ]l ]l

Taking the supremum, we get || f|| = ||/l

5.2.1.4 Corollary
1. LMWV x -+ x Vi, W) is a vector subspace of Hom™ (V; x - x Vi, W).
2. || - |l is a norm on L™ (Vi x --- x V,,, W).

3. For all i € {1,...,n}, the mapping £ (V} x --- x V,,, W) 2, LDV x - x Vi, L=D(Vigy X - x Vi, W) is a
K-linear isomorphism that preserves operator norms.

Here W is arbitrary.

5.2.1.5 Proof We reason by induction on n.
e Forn=1, WV, W)= 2(Vi,W), which is trivially true.

e Suppose that the corollary is true for m-linear mappings with m < n. Take ¢ € {1,...,n — 1}. We consider the
following diagram of mappings:

f(”)(‘/l X o0 X Vn’W) % g(l)(‘/l X o0 X %7$("_i)(‘/,i+l X oo X VT“W))
N N
Hom™ (V; x -+ x Vy, W) ——2—— Hom®(V} x -+ x V;, Hom "™ (Vi1 x -+ x V,,, W)

WTS £ (V) x -+ x V,,, W) is a vector subspace, we only need to show Vg € £ (V; X Vi, L0 (Vigg x - x
Vo, W)), one has |®~1(g)|| = ||g|]| < +< (5.1.0.6 Remark).

For any (z1,...,z,) € V1 X -+ XV,

1874 (9) (@1, -y zn)ll < Mlg(@rs -y @iy igas s @)l < gl - ]l [l
< lglF-llill - lwisall-- - llznll

Therefore, |27 (g)]| < lgll < |27 (9)ll. (I12(9)]| = llgll Vg € LT (V1 x -+ x V,,,W)).

llg(z1,...ozn)l
lgll = sup{ | 5tzedt

5.3 Higher Differentials

We fix a complete non-trivially valued field (K| -|) and normed K-vector spaces E and F.

5.3.1 Def
Let U C FE be an open subset and f : U — F be a mapping.

1. If f is continuous, we say that f is of class C°; any mapping from U to F is O-time differentiable and we denote by
DU f the mapping f: U — F.

2. If f is differentiable on an open neighborhood V' C U of some point p € U, and df : V — L(E, F), x — d f, is n-times
differentiable at p, then we say that f is (n + 1)-times differentiable at p. If f is (n + 1)-times differentiable at any
point p € U, we denote by D"t1f : U — £+ (E"+1 F) the mapping that sends 2 € U to the image of D" (df)(x)
by the K-linear bijection ") (E", Z(E, F)) — £+ (B F).

If D" f is continuous, we say that f is of class C™(n > 0).

5.3.1.1 Remark If f is n-times differentiable, Vi € {1,...,n —1},Vp € U, ¥(hq,...,h,) € E™, one has
Dl(l)n_lf)(p)(hl7 ey hi)(hi-i-h ey hn) = an(p)(hh ey hn)

Drif U — L=(E" F), DYD"'f) :+ U . LO(E, LB F))

D"f %
\
LM (E™ F)
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5.3.1.2 Theorem Assume that (K,|-|) = (R,|-
U.LetpeUand he Est. p+theUVitelCR.
Then,

|). Let f: U — F be a mapping that is (n + 1)-times differentiable on

1o+ 1) - }jMDk .wms< sup “Pﬂwmﬂv@+mw>mnﬂ

te1\{0,1} n:

(Taylor-Lagrange formula)

5.3.2 Gronwall Inequality
Let F be a normed vector space over R, (a,b) € R?, a < b. Let f :[a,b] = F and g : [a,b] — R be continuous mappings
that are differentiable on ]a, b[. Suppose that V¢ €]a, b[, || f/(t)]| < ¢'(t). Then || f(b) — f(a)| < g(b) — g(a).

5.3.2.1 Proof Letc€la,b[,e>0. Let J={t € [c,b]|Vs€]ct],||f(s)— flO)|l <g(s)—g(c)+e(s—c)}. By Def, J is an
interval.

Since f and g are continuous, J is a closed interval, hence J is of the form [c, ¢]. (4.9.3.1 Proof) If t < b, then for h > 0,
sufficiently small, we have:

ft+h) = f(t) = hf'(t) +o(h), g(t+h) —g(t) = hg'(t) + o(h).

There exists 6 > 0, for h € [0,0]:
3 1
1FGE+R) = FOI< U DN -7+ Seh, gt +h) = g(t) = ' (Dh = 5eh.

So, [[f(t+h) = F(D)]| < g(t+ h) = g(t) + eh. Moreover, |[f(t) — f(c)|| < g(t) — g(c) +e(t - ¢).
Thus, || f(t+h) — f(c)]] < gt +h) —g(c) +e(t+ h —c). This implies [¢,t + ] C J, which is a contradiction! Hence,

1£(6) = F(e)l < g(b) — g(c) + (b —¢). For the same reason, |[f(c) — f(a)|| < g(c) - g(a) + (¢ — a).
Therefore, || f(b) — f(a)| < g(b) — g(a) + &(b — a). Since ¢ is arbitrary, we conclude ||f(b) — f(a)|| < g(b) — g(a).
5.3.3 Taylor-Lagrange Formula

Let n € N, F and F be normed vector spaces over R. Let U C E be open and f : U — F be a mapping that is
(n + 1)-times differentiable. Let p € U and h € E' s.t. p+th € U for t €]0,1[. Let M = sup,¢ 1) [|D" f(p + th)|. Then:

[

"1
+th) =Y = h,...,h)|| <
If(p kgk i

k copies

M
(n+1)!

5.3.3.1 Proof Consider ¢: [0,1] — F, defined by:

We have ¢(1) = f(p + th) and ¢(0) = >_;'_o £ D" f(p)(h, ..., h). By the properties of the derivative, we can show that:

/ _\n (1 — t)ka+1 M h h)—on (1 — t)k_le mM(h h
¢(t)_ k=0 k! f(p+t )( PR ) k=1 (k—l)' f(p+t )(a“-a )
k41 copies k copies

n (1 B t)k k+1 n—1 (1 B t)k k+1
R=0" D f(p+th)(h,...,h) = X", i D* ™ f(p+th)(h,...,h)
! N—— ! N——

k41 copies k41 copies

1— t)n+1 Hh||n+1

)

6@l = =L .oy < D g =

- (n+1)!
By Gronwall’s inequality, we get:
M
1) —o(0)] < h
I6(1) = ) < oy
5.3.3.2 Partial Differentials Let n € N>y, Ey,...,E,, and F' be normed vector spaces over a complete valued field

(K,|]). Let U C Ey X --- X E, be an open set, p = (p1,...,pn) € U, i € {1,...,n}. f:U — F. If there exists an open
neighborhood U; of p; in E; s.t. the mapping U; — F, x; — f(p1,--.,Di—1,Tis Pit1,---,Pn) is well defined and differentiable
at p;, we denote by %(p) the differential at p of this mapping U; — F' and say that f admits the i-th partial differential at

p.
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5.3.3.3 Prop Suppose that (K,|-|) = R. Suppose that f has all partial differentials on U as a% U - Z(E;, F) is
continuous for any ¢ € {1,...,n}. Then f is of class C', and for any h = (hy,...,h,) € E1 x --- x E,, ¥p € U, d,f(h) =
E?:la%i(p)(hi)'

5.3.3.4 Proof By induction, it suffices to treat the case where n = 2. Let p = (a,b) € E; x Es, Ve € Ry, 36 > 0,
V(h,k) € Ey x Ey, max{|hl,|k|} < J, one has:

(by the continuity of ngQ).
Consider the mapping ¢ : [0,1] = F, ¢(t) = f(a+ h,b+ tk) — f(a + h,b) — t 2L (a + h, b) (k).

_of )
= gog @+ hb+R)(k) = 5 (a B, b)(K)

¢'(t)

l6(1) = ¢(0)] < 2¢|k||
(by the Gronwall’s inequality)

If(a+hb+k) = fla+hb)— (f)%( +h, D) (k)| < 2e]|K]|

So, ||f(a+h,b+ k) — f(a+ h,b) — 8%2(@ + h,b)(k)|| = o(max{||h]|,||k||}) (since f has second partial derivatives).
(f has a 1-st partial differential:)

| (rt0)= @)= 5L 00y | = otmaxinl. 1)

Z1
(Continuity of 8%2:)
9 0
|t b+) = 520,06 = oamax{ ) 1))

Taking the sum, we get:

1fathb+ k) — flab)— (fjlm,b)(h) n gim,b)(k)) I = o(max{|a]l |&I]})

5.3.3.5 Theorem Let E and F be normed vector spaces over R, U C E open, and (f,,)nen be a sequence of differentiable
mappings from U to F. Let g: U — Z(E, F), suppose that:
1. (dfn)nen converges uniformly to g,

2. (fn)nen converges pointwisely to some mapping f: U — F (Vp € U, (fn(p))nen converges to f(p)).
Then f is differentiable and df = g.

5.3.3.6 Proof Letpec U, V(m,n) e N2 we have:

(@) = fm(x) = (fu(p) = fm (@) < (zlelg e fm — dgfn|> I = pll

(mean value inequality).
Taking lim,,— 40, we get:
1(fn(@) = f(2)) = (fu(p) = F(P)] < enllz —pll
where
€n = sup ||dg frn — gll-
£eu

So,

1f (@) =f(p)=g(p)(x—p) | < [|(f (@)= Fn(x))=(f(0)=Frn @)+ fn (@)= fn(p)=dfn(z=p)I| < 2en|z—pl+[fn(2)=fn(p)—dfn(z—p)|

1f(z) = f(p) — g(p)(x — p)|l

lim sup < 2e,
2+ |z — pll
Taking lim,_, 4, we get
lim sup If () = fp) —9p)(= =Pl _

z—p [l = pll
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5.4 Symmetric Group

5.4.1 Permutations, n-cycle and Transposition

Let X be a set. We denote by &x the set of all bijections from X to itself. The elements of &x we call permutations if
the set X is finite. If z1,...,2, € X are distinct elements, then (z1,...,2,) € Gx s.t. v, > ;41 i=1,...,n—1; 2, — 1
is called an n-cycle. A 2-cycle is called a transposition.

5.4.1.1 Example X ={1,...,7}.
(23)0(421)=(1432).

5.4.1.2 Def We denote with orb,(z) ={go---00(x), neN},z € X,0 € &x.

n times

5.4.1.3 Prop If orb,(x) is a finite set of d elements, then one has 0%(z) = x, orb, (z) = {z,0(x),...,0% ()}, moreover
o~1(z) € orb, (z).

5.4.1.4 Proof The set {(n,m) € N2, n < m, o"(x) = c™(x)} is not empty. Let d’ := min{m —n, (n,m) € N*, n <
m, o"(x) = o™ (x)}, where 0" (2) = 0™ (z) &z =™ "(x).

Therefore, #,0(z),...,o% ~1(z) are all distinct.

{z,0(z),...,091(z)} C orb,(z). Now use the euclidean division, h = qd’' +r r < d'. o"(z) = o"(z), 09 (x) = z. So
we have d' = d.

Moreover, o~ (z) = 09=1(x) € orb, (z).

5.4.1.5 Remark LetY C X, then we have a morphism of groups 6y - &x o — <:z: — {

o(z) ifzeY
x on X\Y '

5.4.1.6 Theorem Let X be a finite set and let & € Gx. Then exist d € N and (ny,...,nq) € N%,, and pairwise disjoint
subsets X1,..., Xy of X of coordinates ni,...,nq, together with n;-circles 7; of X; s.t. c =1 0---074.
In other words, any permutation can be decomposed in the composition of finitely many cycles on disjoint subsets.

5.4.1.7 Proof By induction on the cardinality N of X. The case ¢ = idx is trival (with d=0). So the case when N =0, 1
is clear.

Assume N > 2. Take x € X s.t. o(x) # = and let X7 = orb(x). Let Y = X\ X1, Vy € Y we have that o(y) € Y.
(because if o(y) € X, by the previous prop o~ (o(y)) € X = y € X). Let 7 = 0 |,€ S&y. Use the induction hypothesis, we
get Xo, ..., X, of cardinalities na, ..., ng4, and n;-cycles 7; s.t. 7 =719 0---074. Consider 71 = 0 |x,, then 71 is a ni-cycle of
Xi.

X, ={z,0z,....,.0" ()} =T="m10- 07,

This theorem says that the group of permutations is generated by cycles.

5.4.1.8 Corollary Let X be a finite set. Then Gx is generated by transposition.

5.4.1.9 Proof Thanks to the theorem before, it is enough to decompose cycles in terms of transpositions.
(1,22, .., 2n) = (X1,22) 0 (T2, ..., xy) =+ = (T1,22) 0+ 0 (Tp_1,Tp)-

5.4.1.10 Remark The decomposition in terms of transposition is not unique.

5.4.2 Adjacent

Consider &,, a transposition is called adjacent if is of the form (5,5 + 1), for j =1,...,n — 1.
5.4.2.1 Corollary &, can be generated by adjacent transpositions.

5.4.2.2 Proof It’s enough to decomprise transpositions, because of the previous Cor.
i<j: (t,5)=(,i+1)o(i+1,i+2)o--0(j—1,j)o(j —2,j—1)o---0(4,i+1).

5.4.3 Some Extra Information on &,

5.4.3.1 Cayley Theorem Any finite group can be embedded (injection morphism) in a &,, for some n € N.

5.4.3.2 Proof Let|G|=n,¢:G— 6526, g~ lg, lgx)=gz.
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5.4.3.3 Theorem Assume that X is finite, and o € & x can be written as ¢ = 17 0- - -074 where each 7; is a transposition.
We define sgn(o) = (—1)%.
This is a well-defined function and, moreover, sgn : &x — {1, —1} is a morphism of groups.

5.4.3.4 Proof Let us define the map ¢ : &x — Q\ {0}, ¢(0) =11, j)eq1,.. 02 %}’(J)
Let 0 = {(i,7) € {1,...,n}?|i < j}.
¢(0 07) = [Ny "R = (H(i,j)e@ 70(77(8;::8)(”)> (H(” cp =T ;(9)) $(0)o(7)
#(0) = —1if o is a transposition. Therefore, since o =710+ 01y, ¢(0) = (—1)<.

5.5 Symmetry of Multilinear Maps

In this section, we fix a commutative unitary ring K, and two K —modules F, F'.

5.5.0.1 Def Let n € N and [ € Hom(")(E”,F) if for any 0 € &, one has f(x1, -+, 2n) = f(Toq) " s Tom))-
V(x1,-- - ,x,) € E™. We say that f is symmetric.

If for any (i,j) € {1,---,n}? and any (21, ,2,) € E" s.t. ¥; = x; one has that f(z1,---,x,) = 0, we say that f is
alternating.

5.5.0.2 Prop Supposethat f € Hom(")(E”7 F)is alternating, then f(x1,- -+ ,2,) = sgn(0) (o), s Tom)), V@1, Tn)
E™ Yo € G,

5.5.0.3 Proof By what we proved on permutations, it is enough to prove the Prop for adjacent transpositions. Let i €
{1,--- ,n—1},then 0 = f(21, -+, Ti 1, Ti +Tip1, T+ Tig1, Tigo, - Tn) = f(w1, - 20) +f(01, T, Tig1, Tiy oo+ Tn)-

5.5.0.4 Def We denote by Homgn)(E", F) and Hom™ (E™, F) the set of symmetric and alternating n—linear maps from
E™ to F. These are sub-K-modules of Hom™ (E, F) and when n = 1, Homg)(E7 F) = Hom\"(E, F) = Hom(E, F).

E, F are two normed vector spaces over R. f : E — F, is differentiable (twice): df : E — Z(E,F), D*f : E —
LB, F)) = L*E%F).

5.5.0.5 Theorem (Schweiz) U C Eis an open set, f: U — F' is a function of class C". Then for any p € U D" f(p) €
L (E™, F) is symmetric.

5.5.0.6 Proof By induction and by the fact that permutations are decomposed in transpositions, we can induce to prove

only the case n = 2.

dpiuf — dpf = D?*f(p)(u,-) + o(u), Ve > 0,35: > 0 s.t. 0 < |lul| <4, then take h,k € E, O<||h||<f x € B(p, ) 0<
o] defte.

for any = € B(p, 3), let’s introduce the following function: ¢(z) = f(z + k) — f(z) — D*f(p)(k, ).
We use the "mean value inequality on ¢”:

l¢(p+ h) — o) = lf(x+h+k)— flp+h)—D*f(p)(K,p+h) — flp+k)+ f(p) + D*f(p)(k.p)|l|
=|f(z+h+k)— flp+h)— flp+k)—D*f(p)(k,h) < (t:%pl] [ dpn () D117

dp+en (D) = ldp+ensnf — dpsenf — D f(p)(k,-)]|

Add and subtract d, f, D*f(p)(th,-), by applying triangle inequality, we can get:

< Ndprensnf = dpf = D*f(p)(k + th, )| + ldpsenf — dpf — D> f(p)(th, )| < ldpsuf — dpf — D*f(p)(u,-)|| < ellul]
ellth + k|| +ellth]l < 2e(|[All + [[K])

fFo+h+k) = fp+k) = flp+h) = D*f(p)(k, h) + f(p) = o(max{||Al], | ]|}*)

Exchange the role of h.k, then we get:
1f(p+h+k) = f(p+k) = f(p+h) = D f(p)(h, k) + f]| = o(max{]|hl|, ||k]|||*)

D?f(p)(k,h) — D*f(p)(h, k)|| = o(max{]|l|, 1] }*)
This implies that the LHS is 0.
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5.5.0.7 Def Let E,F be normal vector spaces over a complete valued field (K, |- |). Let U C E, V C F be open subsets
and f: U — V is a bijection.

1. If fand f~! are both continuous, we say that f is a homeomorphism.

2. If f and F~! are both of class ", we say that f is a C"-diffeomorphism. If (2) is true for any n € N, we say that f is a
C*>°-diffeomorphism.

5.5.0.8 Prop Let E and F be Bannach space. Let I(E,F) C Z(FE,F) be the set of linear, continuous, invertible
maps s.t. ||[¢7!|| < +oc. Then I(E, F) is open in .Z(E,F)". Moreover, the map i : I(E,F) — I(F,E) ¢+ ¢ 'isa
C'-diffeomorphism.

5.5.0.9 Proof Let ¢ € I(E,F), we want to show that ¢ —¢ € I(E, F) for ¢ € L(E,F) s.t. ||¢] < W
Notice that ¢ — 1 = ¢po (Idg — ¢~ L 04h). Since ||[¢p~ o 9| < ||¢71||||20]| < 1, it means that the series > (=1 o)™ is

neN
absolutely convergent in . (E, E). This series is the inverse of (Idg—p~11). (Ide—¢~1¢)o i (o~ torp) = Idp— (o~ torp)°N.
n=0
Take Nlirj_l ,then (o — )L = S (¢ toy)moptand (p—9Y) L =p L+ toyop ! +o(|y). Replace the inverse
—+00

neN
with it i(p — ) —i(e) =t + o topop ™t +o(]th]]). Then dyi(v) =i(p)o (=) oi(yp). So i is differentiable. Moreover,
i and i~ ! are continuous.

5.5.0.10 Remark By induction, we can show that i is a CT°°-diffeomorphism.

5.5.0.11 Prop Letn € N{J{oo} Let E, F, G be normed vector spaces over a complete valued field (K, |-|) U C E,V C F
be open sets. f: U — V ¢g:V — G be mappings of class C"™, then g o f also of class C™.

5.5.0.12 Proof The case where n = 0 is known.

Denote by ® : Z(E,F)x E - F (B8,a) — Boa. ® is a bounded bilinear mapping: ||[®(5, )| < ||8|| - ||e]|- Suppose
that n > 1 and the statement is true for mappings of class C" ™! go f is differentiable. Vp € U d,(go f) = depygodyf,
Dlgof): U — Z(E,G), D' = ® o (Dlgo f,D'f), (Dlgo f,DIf) : U — L(F,G) x L(B,F) p > (dspg,dpf).
dgy.ao®(B,0) = Booa+ Pfooa, D'®: L(F,G)x L (E,F) - L(ZL(F,G)x L (E,F),4(E,Q)) (ao,Bo)+ ((a, ) = Bo =
a+ Boag).

Since g, f are of class C™ D' f, D'g are of class C™~! Thus, by induction hypothesis,

(D'go f,D'f)
is of class O™~ 1. Since ® is of class C°°, we obtain that D!(go f) is of class C"~! then go f is of class C™.
5.5.0.13 Prop Let E and F be Banach space over a complete valued field (K, |-|). U and V be open subsets of E and F

respectively.n € N(J{oo} and f: U — V be a bijection. If f is of class C™, then f~! is differentiable, then f~! is of class
cn.

5.5.0.14 Proof fo f™'=1Idy. VyeV,dy(fof™)=dirp)fodyf' =1Idp. Forx € Uy= f(z),d,(fof ") =
dof odyf~' = Idp, do(f ' o f) = dyf odyf . = Idp. So dyf ' — (df)~", that is D'f ' = o (D'f o f~1) where
t:I(E,F) = I(F,E) ¢+ ¢~1. Suppose that f~!is of class C"~! then D'f~! = /D' f o f~1 is of class C" 7!,

5.5.0.15 Local Inversion Theorem Let E and F be Banach space over R, U € E open, f : U — F be a mapping of
class C™ and a € U. Suppose that d, f € I(E, F)(which means d, f is invertible and of bounded inverse), then there exists
open neighborhoods V and W of a and f(a) respectively, s.t.:

e VCUand f(V)CW
e The restriction of f to V defines a bijection from V to W

o (flv) 'W — V is of class C™

5.5.0.16 Proof For y € F consider the mapping:
¢y U= F
zx—(dof) 7 (f(2) — y)

f(z) =y iff ¢,(x) = 2 ie. x is a fix point of ¢y ¢, is of class C* and dy¢y(v) = v — do f 7' (da f(v)). Vv, dagy™ = 0. By the
continuity of D! f, there exists r > 0 s.t. B(a,r) C U and Vy € F,Va € B(a,r), |ds¢y|| < 3.
By the mean value inequality. V(z1,22) € B(a,r), ||¢y(®1) — ¢—y(zs)|l < 3llz1 — 22||. Hence ¢, is contraction.
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gé Then Vz € B(a,r) y € B(f(a),d)
€ B(a,r). By the fixed point theorem,
then g |w: W — V is the inverse of

By the boundedness of (d,f)™1, 36 > 0s.t. Vy € B(f(a),d) |(daf)1(f(a)—y)|
¢y (2) — all < llgy(@) — dy(a)ll + 6y (a) —all < 3llz —al + 5 < 5+ 5 =7, ¢,(4.V)
dg : B(f(a),0) — B(a,r) sending y to the fixed point of ¢,. Let W = B(f(a),g),
flv:V —W. Hence f~1(W) =V is open.

In the following, we prove that g is of class C™ on an open neighborhood of f(a). By reducing V and W, we may
assume that Vo € V, d,f € I(E,F). Let xo € V yo = f(x0) 20 = g(%0), ¥ — yo = f(9(v)) — f(9(y0)) = du, f(9(y) —
9(y0)) +o(llg(y) — g(yo))- So &(y) — g(yo) = (duf)~(y —yo) + o([l9(y) — 9(yo)||)- Thus leads to g(y) — g(y0) = O(lly — voll)
Fe>0 (1—0)lgly) —gwo)ll < ||dey fll~F when ||y — yol| is sufficiently small).

So dy,g = (d.f)~*. By the previous Prop, g is of class C™.




Chapter 6

Integration

6.1 Integral Operators

6.1.1 Riesz Space

Let © be a non-empty set and S be a vector subspace of R, If for all (f,g) € S?, fAg: Q2 — R, w > min{f(w),g(w)} €
S, we say that S is a Riesz space.

6.1.1.1 Prop
1. Forall (f,g) € S, fVg:Q— R, wr max{f(w),g(w)} and fVgeS.

2. Foral feS |f|l:Q—=R, w~|f(w)|and|f|€S.

6.1.1.2 Proof
1. fvg=f+g—fAg
2. [fl=fVv(=))

6.1.2 Integral Operators

We call an integral operator on S any R-linear mapping I : S — R that satisfies the following conditions:
(1) If fe Siss.t. forallwe Q, f(w) >0, then I(f) > 0.

(2) If (fn)nen is a decreasing sequence of elements in S s.t. for all w € Q,lim,, 1 o frn(w) =0, then lim, 1 I(f,) =0.

6.1.2.1 Prop Let (f,)nen bean increasing sequence in S that converges pointwisely to some f € S. Then lim,,— 1o I(f,) =

1(f)

6.1.2.2 Proof Let g, = f — fo € S, and (gn)nen is decreasing and converges pointwise to 0. Then limy- 100 I(gn) = 0,
$0 limy 400 I(fn) = I(f).

6.1.2.3 Prop Let (f,)nen be an increasing sequence in S and f € S. If f < lim, oo fr, then I(f) <lim,— 100 I(fn).
6.1.2.4 Proof Wehave f =1lim, 100 f A fr, 80 I(f) =limy, 0o I(f A fr) <limy,—y00 I(f0).
6.1.2.5 Example

(1) Let 2 =R and S be the vector subspace of R® generated by mappings of the form 1yq,p), where (a,b) € R2, a < b.

1 )1, x€la,b],
Ja.b] = 0, else.

Any element of S is of the form Y1 | A;jLj4, p,]- Define I : S — Roas I (X1 Ailja, p,]) = Doieq Ai(bi — a;). More
generally, if ¢ : R — R is increasing and right-continuous (Va € R,lim. 0+ ¢(x + €) = ¢(z)), we define I, : S — R,
with I, (3572 Milje, b,1) = 2oig Ai((bi) — 0(ar)).

(2) (Radon measure) Let Q be a quasi-compact topological space, and S = C%(Q2) := {f : @ — R | f is continuous}. Let
I:S — R be R-linear, s.t. for all f € S, f >0, one has I(f) > 0.

68
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6.1.3 Dini’s Theorem

Let (fn)nen be a decreasing sequence in C%(), that converges pointwise to some f € C°(Q). Then (f,)nen converges
uniformly to f.

6.1.3.1 Proof Letg,=f,—f>0. Fixe>0. Foralln e N, let U,, = {w € Q| gn(w) < €} which is open. Moreover,
UnenUn = Q@ (U € U; C ---). Since 2 is quasi-compact, there exists N € N s.t. @ = Uy. Therefore, for all n € N,
n > N, and for all w € Q, we have g,(w) < e.

6.1.3.2 Corollary If (f,)nen € SV is decreasing and converges point-wise to 0, then || f,,[|sup := Supyeq | fn(w)| converges
to 0 as n — +oo. For all n € N, we have f,, < ||fnllsup - Lo, 50 0 < I(fn) < || fallsupl(lo) =0 (n — +o00). (If f < g, then
g— 20,5 I(g— f) = I(g) — I(f) > 0, and thus I(g) > I(f).

6.1.4 o-Algebra
We call a o-algebra any subset &7 of Z2(Q) that satisfies the following conditions:
o JeE
o If Ac o/, then Q\ A € &,

o If (A,)nen € &V, then | n €.

neN

6.1.5 Measure
Given a o-algebra o on (), we mean by a measure on (€2, .%/) any mapping p : & — [0, +00] s.t.
e u(2) =0,

o If (A,)pen € @ are pairwise disjoint, then mu (U,,cn An) = D pen 4(An)-

6.2 Riemann Integral

In this section, we fix a Riesz space S and an integral operator I : S — R.

6.2.1 I-Riemann Integrable

For any f : Q — R, define I*(f) := infues,>r I(1), L(f) :=supjeg <y L(1). If I*(f) = L.(f), then we say that f is
I-Riemann integrable and denote the value by I(f) (or L.(f)).

6.2.2 Riemann Integrable Mappings Linear Extension Theorem

The set Z of all I-Riemann integrable mappings forms a vector space of R that contains S. Moreover, I : Z — R is a
R linear mapping that extends I : S — R.

6.2.2.1 Proof Forallh € S, wehave I*(h) = L.(h
thenul—i—ugeSandul—&—uz>f1+f2,sol( 1)+
get I*(f1) + I*(f2) = I"(f1 + f2). Similarly, L.(f1) +
Let f: Q2 — R be a mapping, and A € Ryg. The
Hence, if f € #Z, then \f € Z and I(\f) = M (f).
Finally, I*(—f) = —L.(f) and L.(—f) = —I*(f), so if f € %, then —f € #Z and I(—f) = —1I(f).

) = I(h), soh € Z. Let (fl,fZ) cx. If (Mlaﬂ?) € 52,/.1,1 > fl,MQ > fg,
I(us) > I*(f1 + f2). Taking the infimum with respect to (1, p2), we

L(f2) < L(f1 + f2). Hence, I"(f1 + f2) = L(f1 + f2) = I(f1) + I(f2)-
en I*(A\f) = inf,cs >ar I(p) = AI*(f), and similarly I, (Af) = AL(f).

6.3 Daniell Integral

We fix an integral operator I : S — R.

6.3.1 ST

Let ST = {f Q= RU{+oo} | I(fu)nen € SV, fn, increasing, and f = lim, o0 fn pointwise}.

6.3.1.1 Prop Let f,g be elements of ST s.t. f < g. Let (fn)nen and (gn)nen be increasing sequences in S s.t. f =
lim f,, g= hrf gn. Then liril I(fn) < lirf I(gn).
oo n——+0oo n—-+0oo

n—-+oo

6.3.1.2 Proof For any m € N, f,, < f < g Hence I(f;) < lu}rl I(g,). Taking hr_[& we get hril I(fm) <
n——+o0o m—~+00 m—~400
lim I(gn).

n—-+oo
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6.3.1.3 Corollary Let f € ST. If (f,)nen and (ﬁl)neN are both increasing sequences in S s.t. f = HI—P fn= lim fn
n—-+0oo

n—-+oo

then ll)IJ'I_l I(fn) = ll)rf I(f,) So we denote by I(f) the limit ll)IJ{l I(f,), which is well-defined. Thus we obtain a mapping
I:8" = RUY{+o0} s.t.

o If (fn)nen € SN is increasing then I( EI-E fn) = lim I(fn),
n (o)

n—-+o0o

o If (f,g) € ST, # < g then I(f) < I(g),

o If (f,g) € ST° then f + g € ST and I(f + g) = I(f) + I(g),

o If f€ ST, A>0, then A\f € ST and I(\f) = M (f).

6.3.1.4 Prop Let (fu)nen € (STY be an increasing sequence and f = lim f. Then f & STand I(f) = lim I(f,)

n——+oo

6.3.1.5 Proof For k € N let (gxm)men € SN be an increasing sequence s.t. fi = lirJrrl 9k,m- For n € N, let h,, =
m—+00

gon V-V gnn € 5. The sequence (hy,)nen is increasing. Moreover, fn, > fi > gk (kK < n). Hence f,, > h,. Taking
hm ., we get Vk €N, f= lim f, > lim h, > lim gx, = fx. Taking lim , we get f = lim h,. Hence f € ST
n——+o0o k—+o00 n——+0o

n—+ n—-4o0o n—-4o0o

and I(f) = ngr}:oo](h ) < 712&100 I(fn). Conversely, Vn € N, f > f,,. Hence I(f) > nEToo I(fn).

6.3.2 St
Let S¥+ ={—f| f€S™}. Weextend I to I : S* — R|J{—o0}. By letting I(—f) := —I(f) for f € ST.

6.3.2.1 Prop Let (f,g) € (STUSY)?2If f <g, then I(f) < I(g).

6.3.2.2 Proof It suffices to treat the cases where (f,g) € ST x S+ and (f,g) € ST x S*.
If (f,g) € STx S, then —f € S+ and hence g— f € ST, g— f > 0 In both cases, 0 < I(g—f) = I(g)+1(—f) = I(9) —I(f).

6.3.3 I-Integrable

Let f : © — R be a mapping. We define I(f) := inf I(u) < inf I(u) = I*(f), L(f) == sup I(p) >
peST u>f neS,u2f pnESH u<f

sup I(p) = L.(f). If I(f) = I(f) then we say that f is I-integrable (in the sense of Daniell).
neS,usf

6.3.3.1 Remark If f is I-integrable in the sense of Riemann, then it is I-integrable in the sense of Daniell.

6.3.4 Daniell Theorem

The set L'(I) of all I-integrable mappings forms a vector subspace of R. Moreover,
o V(f,9) € L'(I) f Ng € L'(I);

e [:L'(I) — R is an integral operator extending I : S — R.

6.3.4.1 Proof Let (fi,f2) € L*(1)?, (I1,l2) € Sﬂ,ll < fi1,lo < f1. Let (u1,pe) € S’T2,f1 < w1, fo < po. We have
I+l < fi + fa < pu1 + p2. Taking the supremum with respect to (I1,12), we get I(f1) +I(f2) = L(f1) + L(f2) < L(f1 + f2)-
Taking the infimum with respect to (I1,12), we get I(fi+ f2) < I(f1)+1(f2). Then I(fi+ f2) = L(fi+ f2). So fi+f2 € L*(1)
and I(f1 + f2) = I(f1) + 1(f2). _ _

Similarly, if f € LY(I),\ > 0, then I(Af) = sup I(l)= sup I(N)=M(f)=M(f), I\f)=M(f)=M(f). So

I<Aflest I<flest

Af € LY(I) and I(Af) = M (f). Moreover, if f € L*(I),u € ST,l € St I < f < pthen —pec S+ 1€ ST, —u< —f < —L
Hence T(—f) = —L(f) = —I(f) I(~f) = ~I(f) = —I(f). So —f € L'(I) and I(~f) = —I(f).

Want to prove that V(f1, f2) € LY(I)?, fi A fo € L*(1).

Let (fl,fg) S Ll( )2. For any ¢ > O, H(ll,lg) e ST x ST (Ml,,ug) e St x 8t sit. 1
125 and I(/.n —ll) S 2, I(,U/Q—ZQ) S % One has ll /\lQ <f1/\f2 <,111/\/JJ27 1251 /\,ug—h/\l

Hence I(f1 A f2) = I(fi A f2) <e.

{Sl 2 < f2 <

<
< (w1 —h)+ (M2—52)-

6.3.5 Beppo Levi Theorem

Let (fn)nen be a monotone sequence of elements of Lq(I), which converges pointwisely to some f : Q — R. If (I(f,))nen
converges to a real number o Then f € LY(I) and I(f) =



6.4. SEMI-ALGEBRA 71

6.3.5.1 Proof Assume that (f,),en is increasing. Moreover, by replacing f,, by f, — fo we may assume that fo = 0. Let
e>0VneNlet pu, € STst. fro— foo1 < pin and I(fp, — frno1) > I(pn) — 5
the existence: I(f, — fn-1) = inf I(p). ¥Vu € ST u> fr— fno1 one has I(p) > I(fn — fu_1) + =, then

NesT»lizfn_fn—l ™
I(fn = fa-1) + 57 < I(fn — fn—1) contraction.

n

Thus f, = kX_)l(fk = fe-1) < A+ and I(fp) > él(f(uk) —55) = I(pa) + -+ I(pn) — € Let p = py +

R o A SR Gis'T, I(g) = > I(ptn) One has p > f. lirf I(fn) > I(u) — € > I(f) — €. Similarly, one can choose

ln € S 1y < fo, I(ln) > I(fn) — ¢, lig_iirnfl(ln) > o —e. Note that [,, < f, < f,s0a—€ < lig_iirnfl(ln) < I(f). Thus
a—e<I(f) <I(f) Sate Let e~ 0weget I(f) = I(f) = o

6.3.6 Fatou’s Lemma

Let (fn)nen € LY(1)N Assume that there is g € L'(I) s.t. Yn € N f, > g. If hgl}_nf fn is a mapping from €2 to R and
. . . . 1 . . < . .
liminf I(f,) < 400, then InIQ.ng” € L'(I) and I(légl}rgg fn) < IJQiIéofI(f")

n—-+oo

6.3.6.1 Proof For any n € N, let g, = kgrfoo(f" A fnt1 Ao A fagr). Then BQE;ff" = ngrfoogn. For any k,
one has f, A+ A fuyr > g. Hence I(f,) > k£r+n00 I(fo A+ A fugk) = I(g). By the theorem of Beppo Levi, g, €
LY(I) and I(g,) = ngrfool(f” A A fogk) < I(fn). Note that (gn)nen is increasing and E%H;fl(fn) < 400 Hence
nEIJIrloo I(g,) = lﬁrilirg I(g,) < ngl}rlg I(fn) < +00. By the theorem of Beppo Levi, nEIJIrloogn € LY(I) and I(lnlglfgof fn) =

I( im g,) = lim I(gn)<liminfI(f)

n—-+oo

6.3.7 Lebesgue Dominated Convergence Theorem

Let (fn)nen be a sequence in L'(I) that converges pointwisely to some f : £ — R Assume that there exists g € L'(I)
st. Vn €N, |fn| < g Then f € L'(I) and I(f) = lirf I(fn).
n—-+oo

6.3.7.1 Proof Apply Fatou’s lemma to (f,)nen and (—f)nen to get I(f) > limsup I(f,) > liminf I(f,) > I(f).

6.3.7.2 Notation Let ¢ :R — R be an increasing and right continuous mapping. Let S be the vector subspace of RF gen-
erated by 1,4 with (a,b) € R?,a < b. For any f € L*(1,,). I,(f) is denoted as [, f(x)dp(x). For any subset A of R, if 14 f €

LY(I), then [, f(z)dp(z) denotes [, La(z)f(x)de(x) = I(1af). If (a,b) € R?,a < b, f; f(x)dp(z) denotes f]a)b] f(x)dp(z);
;) f(x)dp(x) denotes _f]a,b] f(z)dp(z). If p(x) = = for any = € R, we replace do(x) by dz. Ye > 0,30, m(E) <9, [, fdu <

6.4 Semi-Algebra

6.4.1 Disjoint Union

Let A be sets, then notation A = | | A; denotes:
i€l

1. (A;)ier is a pairwisely disjoint family of sets.
2. A= A
i€l
6.4.2 Def
Let 2 be a set. We call a semi-algebra on Q any C C () satisfies:
L.pecC
2.V (A,B)eC?* AnBeC

3. V (A, B) € C? 3 (C;)™; a finite family of elements in C s.t. B\A= || C;
i=1

1=

6.4.2.1 Algebra Let C be a semi-algebra on 2. The set

i=1

{A € 9(9)‘3 neN, 3 (A)p, €C st A=| | AZ}

called the algebra generated by C.
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6.4.2.2 Prop Let C be a semi-algebra on 2, A be the algebra generated by C. Then:
1. 0 e A;
2.V(A,B)e A2, AnBe A, B\Ae A, AUB € A.

6.4.2.3 Proof By Def, ) c A, C C A.
Moreover, if A and B be elements of A s.t. AN B =), then A|JB € A.

n m
Let A= || A;, B= || Bj, then A|UB = L A;N B;. Hence ANB € A.
i=1 Jj=1 (4,5)€{1,--- ,n}x{1,--- ,;m}
Since B\A = ((B\41)\Az---)\ Ay, by induction, it suffices to treat the case where A € C.
Then B\A= || € .A. Finally, A|UB = (AN B)U (A\B) U (B\A).
B\A

6.4.2.4 Prop Let C be a semi-algebra on 2, A be a algebra generated by C.
Let S be the vector subspace of R over R generated by mappings of the form:

14, AeC (thenVBE.A, ]lBES)

I:S — R be a R-linear mapping. Suppose that: V (f,g) € S x S s.t. f < g, one has I(f) < I(g). Then: I is an
integral-operator iff for any decreasing (C) sequence (A, )nen in AN s.t. (| A, =0, one has lim I(14,) =0.

neN n—-+oo

6.4.2.5 Lemma V (f,g)€ S? fAgeS.

6.4.2.6 Proof VAc A I (A),eC" A= |]|A;,solyg=) 14, €85.
i=1 i=1
=: Suppose that I is an integral operator, (14, )nen is a decreasing sequence in S and lim 14, (w) =0,V w € Q. Hence,

n—-+oo
nEI—&r-loo I(]lA”) =0

<: Let (F,)nen be a decreasing sequence in S that converges pointwisely to 0.
Let By = {w € Q|f0(w) > 0} S A, M = InaXfo(Q).

Lemma: Vf € S, 3(A4;)", € C™ pairwise disjoint, and (A\;)i~; € R™, f = > \jla,.
i=1

Proof: f is of the form ) a;1p,, where B; € C. For any subset I C {1,...,m}, I # @, I # {1,...,m}, let
j=1

Br = (ﬂ Bi> N ( N (Q\Bﬁ), if I = {1,...,m}, let B = (| B;. Then (By)c(i,..,m} are pairwise disjoint.

il Je{l,...mI\I iel
Moreover, since I # @, By € C. We have B; = L] B;y. Hence f = >raj | 1p,.
IC{1,....m},jeI G#IC{1,....,m} \JEI
Corollary:

1. If f €S, then fAO € S.
2. If (f,g) € S?, then fAg=(f—g)ANO+g€S.

So we proved the 6.4.2.5 Lemma mentioned before.

For any ¢ > 0, A5 = {w € Q|fn(w) > ¢} € A. Moreover, since ll)rf fo =0, N A5 = 0. Note that 0 < f, <
n o0 neN
elp + Ml4e, 500 < I(fn) <el(lp)+ MI(14:), which leads to limsup I(f,) < el(1p), Ve > 0. So Elgr_l I(fn) =0.

n—-4o0o

6.4.2.7 Example =R, C = {]a,b]|(a,b) € R?, a <b}, A= algebra generated by C, ¢ : R — R be an increasing right
continuous mapping.
I, S =R, I,(14) = o(b) — ¢(a)

In the following, we will prove that I, is a well-defined integral operator.

6.4.2.8 Lemma Ve>0,VAcA A#0,IB€ Ast. 0 #BC Aand [,(14) — I,(1p) <e.

6.4.2.9 Proof We first consider the case where A € C, A =|a,b], a < b. By the right continuity of ¢, 3 a’ €]a,b[ s.t.
90(0‘/) - (p(a) <e. Let B :}a/ab[v B = [a/ab] g]avb]a Iga(]lB) = @(b) - @(a’)a

I,(14) — I,(1p) = ¢(d’) — p(a) < e. In general, A = || A; with A; € C, Vi€ {i,---,n}, I B, €C, 0 # B; C A,
i=1

K2

I(1a,)—I(1p,) < £, B= ‘|_|1 By, then I(14) — I(1p) <e.
=

6.4.2.10 Theorem I, is an integral operator.
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6.4.2.11 Proof Let (A,)nen be a decreasing sequence in A s.t. (| A, = 0. Let € > 0, for any n € N, let B, € A s.t.
neN

0+B,CA, and I,(14,)—I,(1g, )_2n.N0tethatBlscompact Foranyn € N, let C, = ByN---NB, C ByN---NDB,.

Since N A, =0, (| B, =0. Hence 3 N € N, ﬂ B,, = (). Moreover,
neN neN

Bn\cn = Bn\(Bn N Cnfl) = Bn\Cnfl - An\cnfl - Anfl\cnfl
Hence Io(La,\c.) = Lp(Lp,n\c.) + Lo(Lan\p,) < Lp(La, \cpi) + 3w S0 Lp(la,) <€, V2 N. Thus lm Jo(1a,).

6.4.2.12 Prop Let pu:C — Rx( be a mapping s.t. for any (4, B) € C?, A C B, and any (C;)"; € C"s.t. B\A= || C;,
i=1

one has u(B) = u(A) + E 1(C5).
Then there is a umque R linear mapping I, : S = R s.t. I,(14) = p(A) for all A €C.

6.4.2.13 Proof We intend to define I, (Z /\i]lA,i) as Y \u(4;) for A; € C.
i=1 i=1

We need to check that if f € S is written as f = > \ila, = > §1p;, then Y \iu(A4;) = > §u(B;).
i=1 j=1 i=1 j=1
We have 0 = 21 Aip(A4;) — Z &iu(By).
It suffices to prove that if Z a;14, =0 for a; € R and A4; € C, then Z a;p(A;) = 0.
For I C{1,...,n}, letA1 {w€Q|VZEI¢u6A1,Vz€{1 n}\IwEQ\A}e;z%whenI;EQ
Lemma: Let Be &. If B = |_| B; = |_| C; with B; € C and C; € C, then Z w(B;) = Z 1(C;). In particular, we can

=

extend p: C = Rxsg to i : &/ — Rxq s.t. for any Dsq,..., D, in & disjoint, p(D1||--- || Dn) = D u(Dy).
i=1
Proof: We have B; = | | (B;NC}), so p(B;) = E w(B;NCy).
J=1 J=1

n n m m n m
Therefore, 3, p(Bi) = 2. 2 n(Bi N Cy) = 2. 2 (€ N Bi) = 30 w(Cy).

i=1 i=15=1 j=li=1 j=1
Returning to the proof of the proposition, we have 0 = " a;14, = > (Z ai> La,.

i=1 @#IC{L,...,;n} \i€l
Hence, when A; # &, we have Y a; = 0.
i€l
Thus, Sap(A) = Soa Y pA)= X (A Ya=0.
i=1 =1 IC{1,...,n} GAIC{L,...,n} i€l

6.5 Integrable Functions

In this section, let Q2 be a set, s C R be a vector space over R. V (f,g) € S, fAg € S, I:S — R be a integral operator.

6.5.1 Prop

Suppose that 1o € L'(I)T, the set G =
t G — Rsp, then mapping defined as p(A) :

(U An) = > p(An).
neN neN

{A C Q|14 € LY(I)'} is a o-algebra on . Moreover, if we denote by
:= I(1,), then u satisfies: V (A, )nen € GV that is pairwisely disjoint, then

6.5.2 Proof
1. 0 € G, since 0 =1y € LY(I)T. Q € G, since 1 € L}(I)T.
2. If A and B are elements of G, A C B, then 14 <1p,s0 1p— 14 =1p\4 € Ly(nt

3. If(A,B)EgQ,]lAUB:]lA/\]lBELl(I)ﬂSOAUBEQ'. If(An)neNEgn A= U An,then]lA— hm 14, U-UA4, €

neN
n

LI(I)TﬁAEQ. ]IUAn: lim ]lAOU“'UA = lim Z]lAv

neN n—-+oo "on—too iy
p(lJAn) =11 G a,) = lim 1) 1) = lim (u(Ag)+ -+ u(An) = > u(An)

n—-+o0o n—-+oo
neN nen i=1 neN

(Using Beppo Levi Theorem).
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6.6 Limit and Differential of Integrals with Parameters
Let © be a set, S C R be an R-vector subspace s.t. V (f,g) € S?, fAg€ S Let I : S — R be an integral operator.

6.6.0.1 Theorem Let X be a topological space, p € X, f: Q x X — R be a mapping, g € L*(I). Suppose that:
1.Vwe, flw,): X 2R, =z f(w,z) is continuous at p.
2.VneX, f(,o): X - R, z+ f(w,z) belongs to L*(I) and V w € Q, |f(w,z)| < g(w).
3. p has a countable neighborhood basis in X.

Then (z € X) — I(f(-,x)) is continuous at p

6.6.0.2 Proof Take w € €, Let (x,)neny be a sequence in X that converges to p. Then for any n, f, : @ — R,
fn(w) == f(w,x), one has |f,| < g. Moreover, V w € Q, 1i1}_1 folw) = 111}_1 f(w,z) = f(w,p). Then, by Dominated
n——+0oo n——+0oo

Convergence Theorem, lir}rl I(fn) =I1(f(,p)).
n—-+0oo

6.6.0.3 Theorem Let J be an open interval in R, f: Q x J — R be a mapping, g € L'(I).
Assume that:

1.VweQ flw):J =R, fr flwt)is differentiable. (We denote by %(w,t) the derivation at ¢) V t € J,
|5 (@, )] < gw)
2.Vted, f(1): Q—=R, wr f(w,t) belongs to L*(I)

Then, p: J = R, tw— I(f(-,t)) is differentiable, and ¢'(t) = I(%(~,t))

6.6.0.4 Proof Letae€ Jand (t,)nen be a sequence in J\{a} s.t. lir_irrl tn, = a. Then
n—-+0oQ
(p(tn) — @(a) =7 (f(7tn) — f(>a))

thn —a th —a

VweQ, | Lt =S@a)| and its limit is 2L (w,t). Then lim £tn=e(@ _ g (%(.,t))

th—a ot n=>+Foo tn—a

6.7 Measure Theory

6.7.1 Measurable Space

We call measurable space any pair (E, ) where E is a set any £ is a o-algebra on E.
Let (X,Xx) and (Y, Xy) be two measurable spaces. ¥x Qg Xy := o({S1 x S3: 51 € £x,5 € Ty }).

6.7.1.1 Notation Take A C X xY.
Foree X, A, :={yeY :(x,y) € A} = m(({z} x V)N A), called vertical section of A.
ForyeY, Ay :=m((X x {y}) N A), called horizontal section of A.

6.7.1.2 Def Let X be a set, then D C P(X) is a Dynkin system if:
1. X eD.
2. VD e D, X\D € D.
3. If {Dy,}nen is a sequence in D of pairwise disjoint sets, then (J,, D)n € D.

A o-algebra is a Dynkin system.

6.7.1.3 Def Let G C P(X), then 6(G) C P(X) is called the Dynkin system generated by G:
1. G C6(9);
2. If D is a Dynkin system containing G, then §(G) C D.

This is the smallest Dynkin system containing G.
6.7.1.4 Exercise §(G) exists and it’s unique.

6.7.1.5 Prop If D is a Dynkin system closed under the finite intersection, then it is a o-algebra.



6.7. MEASURE THEORY 75

6.7.1.6 Proof We have to show that D is closed under any countable union.

Let {D,} be any sequence in D, define: E,, :=D, N (X UE,), Ey= Dy

Since D is closed under intersection, E,, € D. Now the E,, are all disjoint, and by induction we can prove that |J;_, Ex =
Ur—o Dk. Thus we have shown that |J, D, =U,, En € D.

6.7.1.7 Prop Let X be a set, and let G C P(X). Assume that G is closed under finite intersection, then 6(G) = o(G).

6.7.1.8 Proof We know §(G) C o(G). We need to show that §(G) is a o-algebra, so we must demonstrate it is closed
under intersection.
Let D € §(G), and define dp :={E C X | END € §(G)}. One can claim that dp is a Dynkin system.

1. XUD=D,s0 X €6p.
2. (Paolo) For all E € 0p, (X\E)ND=((X\E)NnD)U((X\D)ND)=(X\E)U(X\D))NnD=(X\(END))ND.
Further, (X \(END)ND=X\((END)U(X\D)),and (END)N(X\ D) = 0.

Since END € 4(G) (because E € dp) and X \ D € §(G) (because D € §(G)), it follows that (END)U (X \ D) € §(G).
Therefore, (X \ E) N D € §(G), and thus X \ E € dp.

3. (Own) For A € ép, the goal is to show X \ A € ép: AND € §(G) and D € 6(G). Then, (AND)U (X \ D) € 6(G). The
complement is: X\ (X \ (AND))ND)— (X\(AND))ND = (X\A)(D. These things are all in 6(G).

4. Let {E,}nen be pairwise disjoint elements in dp. Then,

<|_| En> ND= |_|(En N D).

Since E,, N D € §(G) and the disjoint union belongs to 6(G), it follows that | |, E,, € dp.

Note that for all G € G, G C ég, hence §(G) C 6g. For all (A, B) € 6(G)?, since §(G) C dp, A € ép, and thus
ANBeig).

6.7.1.9 Theorem Let (X,Xx,u) and (Y,Xy,r) be two o-finite measure spaces. Then for any £ € Yx ® Xy, the
functions fr : X - RU {0}, z+— v(E;)and gg:Y - RU{o0}, y+— pu(EY) are ¥ x-measurable and ¥y -measurable,
respectively.

6.7.1.10 Proof We prove the result only for fg.
Assume v is a finite measure (v(Y) < 400). Define F = {E € ¥x ® Xy | fg is measurable}. We aim to show
F=Yx®2y.

e Let S; € X¥x and Sy € Xy. Then,

if
(51 S2). = {32 Hee s

otherwise.

Thus,
fsixsy (@) = v((S1 % S2)e) = v(52)Is, (2).

Since Sy € Yy, Ig, is measurable, and v(S2) is a constant, fs, xs, is measurable. Hence, Sy x Sy € F.

e Now, show F is a Dynkin system:

1. X XY € F (take S; = X, So =Y).

2. Let D € F. Then,
(X xY)\ D), = Y\ D,

Since v is finite,
fxxyno(@) =v(Y \ D) =v(Y) =v(Dz) = v(Y) = fp().
Thus, f(xxy)\p is measurable, and (X xY)\ D € F.
3. Let {D,} be a sequence of disjoint sets in F. Then,

fu, o, (@) = v <<|_| Dn> ) = <|_|<Dn>m> =3 U(Da)e) = Y fo. (@),

so f, p, is measurable.
o Let G={S1 x 53|51 €Xx,5 €Xy}. Then G C F, and G is closed under intersection:
(S1 xT1)N(S2 x Ta) = (S1 N S2) x (T1 NTy).
Hence, 6(G) =0(G) =Xx @ ¥y C F.
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e For the o-finite case, let Y = J,, Y, with v(Y},) < 4+o0. Define disjoint sets F,, = Y, N (X \ Upp, V), s0 Y =, Fn
and v(F,) < +o0. Define finite measures v (FE) := v(E N F,). Then,

fe(x) = v(Be) =Y v () =Y [ (),

where each fgl) is measurable. Thus, fg is measurable.

6.7.1.11 Prop Let Q be a set and (G;);cr be a family of o-algebra on Q. Then G = [ G; is a o-algebra.
iel

6.7.1.12 Proof
1.0eg,Qeg
2. fAeG,then M\A g

3. Let (Ay)nen € GN. For any i € I, (Ap)neny € G, 80 U €G;, hence |J A, €G
neN neN

6.7.1.13 Def Let C C £(1), we denote by o(C) the intersection of all o-algebras on 2 containing C. It is the smallest
o-algebra containing C

6.7.1.14 Example
1. Let (X, 7) be a topological space, o(7) is called the Borel o-algebra of X.

2. On [—o0, +0o0], the following o-algebra are the same:

e G =o({[a,+o0]la € R})
e Gy =o0({]a,+o0]la € R})
o g3 = o({[-00,a]la € R})
e Gs=o({[-00,alla € R})

Moreover, B = {A C |A € G} is equal to the Borel o-algebra of R

6.7.1.15 Proof [a,+oo[= (] Ja—+,+0c] € G,
neNL

6.7.1.16 Exercise Borel o-algebra of R = o({] — 00, a]|a € R}).

6.7.1.17 Def Let f: X — Y be a mapping of sets. For any Cy C Z(Y), we denoted by f~(Cy) := {f~1(B)|B € Cy }.
For any Cx C Z(X), we denoted by f.(Cx) :={B CY|f~1(B) € Cx}.

6.7.1.18 Prop Let f: X — Y be a mapping. If Gy is a o-algebra on Y, f~1(Gy) is a o-algebra on X. If Gy is a
o-algebra on X, f.(Gx) is a o-algebra on Y.

6.7.1.19 Proof

L 0= J0) € NG, ¥ B € Gy, X\FNB) = FHV\B). I (Audues € G, A = U Au, then U S~ (An) =
neN neN
F7HA) € f7H(Gy)
2. f710) =0 € Gx,s00 € f*(Gx). VB € fu(Gx), fT*(Y\B) = X\f~1(B) € Gy, so Y\B € f.(Gx). ¥ (By)nen €
fo(Gx)N, B= U Bu, f7'(B)= U f(Bn) so B € f.(Gx)

neN neN

6.7.1.20 measurable Let (X,Gx) and (Y,Gy) be measurable spaces, f : X — Y be a mapping.
If f~1(Gy) C Gx or equivalently Gy C f.(Gx), then we say that f is measurable.

6.7.1.21 Prop Let (X,Gx), (Y,Gy) and (Z,Gz) be measurable spaces, f : X — Y and g : ¥ — Z be measurable
mappings. Then g o f is measurable.

6.7.1.22 Proof VYV Be Gy, (gof) " YB)=f"1g'(B)), 9 (B) €Gy,so f7 (g1 (B)) € Gy.

6.7.1.23 Def Let Q be a set, ((F;,&;))icr be a family of measurable spaces. f : (f;)ier where f; : Q@ — E; is a mapping.

We denote by o(f) the o-algebra on Q o (U fi_l(é'i)). It is the smallest o-algebra on Q making all f; measurable.
i€l
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6.7.1.24 Prop We keep the notation of the above Def. For any i € I, let C; C Z(E;) s.t. o(C;) = &;. Then o(f) =
o(U f7(C)).

el

6.7.1.25 Proof Let g = o(|J f; '(Ci)), by definition, G C o(f). For any i € I, fi.(o(f; *(C:))) is a o-algebra on E;
iel
containing C;. So & C fi.(a(f7(C;))). which leads to f; (&) C o(f; *(C:)) € G. Hence |J £, (&) CG = a(f) CG.
el

6.7.1.26 Corollary Let (X,Gx) and (Y, Gy ) be measurable spaces, f : X — Y be a mapping. Cy C Gy s.t. o(Cy) = Gy.
Then f is measurable iff V B € Cy, f~1(B) € Gx.

6.7.1.27 Proof o(f)=o(f1(Cy)) is measurable iff o(f) C Gx

6.7.1.28 Example Let ((E;,&;))icr be a family of measurable spaces, E = [[ E;. Vi€ I, m: E— E;, (xj)jer — .
icl
We denote by ) &; the o-algebra o((m;)icr)-
iel

6.7.1.29 Prop Let X be a set, ((F;,&;))icr be measurable spaces, (£2,G) be a measurable space. f = (f; : X = E;)icr
be mappings. Then ¢ : (Q,G) — (X, 0(f)) is measurable iff Vi€ I, fiop: (Q,G) = (E,&;) is measurable.

6.7.1.30 Proof =: If ¢ is measurable since each f; is measurable, one has f; o ¢ is measurable.

«: If f; 0 is measurable, V B € &;, (fio ) Y (B) = ¢ 1(f~1(B)) € G. Hence ¢! (U f_l(é'i)> C G, since o(f) =
i€l

o (U f_l(é'i)>, © is measurable.

i€l
6.7.1.31 example Let (2,G) be a measurable space.

1. VA€EG, 14:9Q — R is measurable. For any U C R, 1,'(U) = A or Q\A or Q or (.

2. Let X ,Y be topological spaces. If f : X — Y is a continuous mapping, then f is measurable with respect to Borel
o-algebra.

3. Let (Q,G) be a measurable space. If f,g: Q) — R are measurable, then

(f+9) (fxg) (Frg) (fVg)
are all measurable.

4. Let (fn)nen be a family of measurable mappings from 2 to [—oo, 00] f = sup f,, (It’s necessary to be countable f,,). Then
neN
f is measurable. (Similarly, inlf\l is measurable). In fact, for any ¢ € R, {w € Q|f(w) >a}= J we Q|fn(w) >a€g
ne neN

6.8 Measure

6.8.1 o-Additive

Let € be a set, C be a semi-algebra on 2. p: C — R>g be a mapping. If Vn € N,V (4;)_, € C™ pairwisely disjoint with

A= || A; €C, one has u(A) = u(A1) + -+ - + u(A,), we say that p is additive.
i=1

Let S = R-vector subspace of R generated by (14)aec, then I, : S — R, > Nila, — > Aiu(A;) is well-defined. If I, is

=1 =1
an integral operator, we say that p is o-additive.

6.8.2 Measure Space

Let (Q,G) be a measurable space, 1 : G — [0, +00] be a mapping. If () = 0 and if for any (A, )n,en € GV pairwisely

disjoint, u < U An) = > u(Ay), (Q,G,u) is called a measure space.
neN neN

6.8.2.1 Def If3 (A,)nen € GV st. Q= |J A, and p(4,) < +oo, then p is said to be o-finite
neN

6.8.2.2 Example (R,B(R),\) is o-finite because R = |J,,[—n,n].
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6.8.3 Caratheodory

Let © be a set, C be a semi-algebra on €2, pn : @ — R>o be a o-additive mapping. Assume that there is a sequence

(A)nen €CNst. Q= |J A,. The p extends to a o-finite measure on o(C)
neN

6.8.3.1 Proof Let S C R be the vector subspace generated by 14, A € C. Let G = {A C Q|14 € L*(1,)"}, then G is a
o-algebra containing C. Hence, o(C) C G.
Moreover, (A € G) — I,(1,4) is a measure on G, which is o-algebra.

6.8.3.2 Example Q = R, C = {Ja,b]|(a,b) € R% a < b}, 0(C) = Borel o-algebra, ¢ : R — R is increasing right
continuous. g, :C —= Rxo, Ja,b] — ¢(b) — ¢(a) is o-additive.

Hence, u, extends to a measure o(C) — [0, +o0] called the Stieltjes measure. In particular case where p(z) =z, V z € R,
1, is called a Lebesgue measure.

6.8.3.3 Def Let (Q,G, 1) be a o-finite measure space, where ¢ = {A € G|u(A4) < +o0} is a semi-algebra and o(C) = G,
and pyc is additive. We denoted by LY(9,G, 1) the set of measurable mappings f : @ — R, that belongs to L'(,). For
feL (G, u)', I,(f) is denoted as:

/Q F (@)l ds)

Particular case:
If @ =R, p = py, Stieltjes measure, [, f(x)u,(dx) is denoted as [, f(z)dp(x).

6.8.3.4 Prop Let (9,3, 1) be a o-finite measure space, f : 2 — R be a measurable mapping. If 3g € L'(Q,G, ), g < f,
then f € LY (Q,G,u)".

6.8.3.5 Proof By replacing f by f — g, we may assume that g = 0. Consider first the case where f = 1g, B € G. Let
(Ap)nen be an increasing sequence in G, u(A,) < 4+o00,, |J A, = Q. Then 1p = hr}rl Ipna € LY(Q,G, 1)". In general,
n—-+0oo

neN
f = ngg}oo fﬂn
n2"—1 k
fa= Y orlweard<sw <ty + 1l weal fw)zn)
k=0

6.8.3.6 Corollary Let f:Q — R be a measurable mapping. Then f € L'(Q,G, p) iff [, |f(w)|p(dw) < +o0.

6.8.3.7 Proof =-:

One has f € L'(1,), hence |f| € L*(1,,), so I, < 400 <:

Suppose that [, | f(w)|p(dw) < +o0, since fV 0 and —(f A0) belong to L*(Q, G, u)T, and fVv 0 < |f|, —=(f A0) < |f], s0 fVO
and —(f A 0) belong to L'(Q,G, ). Hence, f = fVO0—fA0€ LYQ, G, pu).

6.9 Fundamental Theorem of Calculus

6.9.0.1 Theorem Let J be an open interval over R, ¢y € J, f: J — R be a continuous mapping.

1. V (a,b) € J%, a < b,

R — R
Lgyf: o= f(z) = €la, b]
0 z¢a,b

belongs to L!(R, B, i), where B is Borel o-algebra, p is Lebesgue measure.
2. Let F': J =R, F(z) := f;ﬂ f(t)dt. Then F is differentiable on J with F'(x) = f(z)

6.9.0.2 Corollary If G:J — R is a mapping s.t. G’ = f, then V (a,b) € J%, a < b, G(b) — G(a) = f; ft)de

6.9.0.3 Proof
1. f is bounded by [a,b], hence [ L}, | fldz < +oc.

2. Let x € J, h > 0 st. [z, 4+ h] C J, f is uniformly continuous on [z, 4+ h]. For 0 < t < h, inf fiz .4 <

w = %f;-‘-t f(s)ds < sup fijz,a4r], since f is continuous, %ijrg)inf fifw,o+h] = tILII(l)SUP fiwwsn) = [(@), so
Fz+t)—F(z) _ imi i F(z)-F(z—t) _ o
>0, t—0 t = f(@)h. Similarly, t>[1)1,1?~>0 T = f(z)h, hence F'(z) = f(x).
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6.9.0.4 Remark

1. Let F' and G be two mappings of class C! from J to R, then F x G is of class C! and (F x G) = F/ x G+ F x G'.
Let f=F', g=G', then V (a,b) € J2, a < b, [ f()G(t)dt = F(b)G(b) — F(a)G(a) — [* F(t)g(t)dt.

2. Let ¢ : I — J be a mapping of class C', where I is an interval. Let F' : J — R be a mapping of class C*,
(fop)(z) = F'(o(x))¢/(x). Then ¥ (o, 8) € I%, o < B, [ F'(ip(2))¢! (x)dz = (F 0 9)(8) — (F o p)(cx).

6.10 L? space

6.10.0.1 Def We fix a measure space (2, G, p). Let p € R>q, we denote by LP(£2, G, ) the set of measurable mappings
[ Q=R st | fller = (fo, If (@) u(d))”.

=

aP a
—&-%:1. For any (a,b) € R? ?—i—% > ab.

2 1
6.10.0.2 Lemma Let (p,q) €RS; sit.

6.10.0.3 Proof Since exp is convex, %expplna + % expqlnb > explna+1Inb = ab.

6.10.1 Holder’s Inequality
Let f:Q — R and g : Q — R be measurable mappings. One has || f X gllrr < ||fllee + |9l L2

i 4 @ | @) [y le@e@luldz) _ o f@)Pu(d)
6.10.1.1 Proof Take ¢ = g~ and ¢ =y, [p(e)pe] < 2200 + S0, Sqmrmiorse < S 4
Jola@)|p(dz) 1 | 1 _
e, —pTg=L

6.10.1.2 Corollary Let p>1,V (f,g) € LP(Q,G, ), |f + glle < £ + 119l L”

6.10.1.3 Proof Apply Holder’s inequality to show: f x (f +¢)P~! and g x (f + g)P~ L.



Chapter 7

Multilinear Algebra

7.1 Tensor Products of Linear Spaces

7.1.1 Goal

Study in a systemmetical way the relation between linear mappings and multilinear mappings.

7.1.2 Tensor Products

Let R be a commutative ring with unity.

7.1.2.1 Theorem Let M and N be two R-modules. There exists an R-module denoted by M ®r N and a bilinear
mapping t : M x N = M ®gr N having the following properties:

1. V R-module P and any bilinear mapping s : M x N — P, 3! linear mapping fs : M @r N — P s.t. s = fsot. (Universal
property)

2. If T,t’ is another couple satisfying (1) s.t. s = g5 ot’, then there exists an unique isomorphism 7' 2 M ®p N.

7.1.2.2 Proof
1. Let F be the free R-module generated by M x N, that is, F = {X tinite(i,j)@i,j(mi,ni) | a;j € R,m; € M,n; € N}.

Let G be the free R-submodule generated by the elements of the following shape (written in the following way):

(m+m/,n)— (m,n) — (m',n)
(m,n+n')—(m,n) — (m,n’)
(rm,n) — r(m,n)
(

m,rn) —r(m,n)

V(m,m') € M?, (n,n’) € N*>, r€R.

Then we can define M ®r N := F/G, so t(m +m/,n) = t(m,n) + t(m',n), t(m,n+n') = t(m,n) + t(m,n’), so t is
bilinear. So fs(G + (m,n)) = s(m, n), which is linear and unique.

2. fvogiot' = fypot=1t,so fyog, =Idy. (Using the first property.)

7.1.2.3 Def The R-module M ® g N constructed above is called the tensor product of M and N. An element of M @ g N
is called tensor. We denote m ®g n as t(m,n), and any element of the form is called pure tensor.

7.1.2.4 Remark Pure tensors generate M ®g N. In particular, any tensor can be written of pure tensors.

7.1.2.5 Corollary The mapping s — fs defined above gives an isomorphism: (M, N; P) = ¥¢(M ®g N; P) for any
R-module P.

7.1.2.6 Proof

e surj: Take ¢ € Z(M ®pr N; P), then t o ¢ is bilinear, which is in £ (M, N; P).

e inj: Vs € £ (m,n; P), which is bilinear. By 7.1.2.1 Theorem, we can infer that fs exists, hence injective.

80
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7.1.2.7 Prop
1. M@r N =N ®grM.

2. M®r (N®gr P)=(M®r N)Q®pg P.
So that we can remove the parenthesis and write M1 @ g Ma Qg - -+ ®g M,,. We call it n-fold tensor product.

3. Show that M; ®g Ms Qg - -+ ®r M, factorizes the multi-linear mappings and £ (M, ..., M,; P) 2 X (M, Qg ... Qr
M,,; P). We can solve this by induction.

We have the general definition of tensors product for R-modules, but we are interested in the case where R is a field. And
we will omit R this time.

7.1.2.8 Lemma Let V1,...,V, be vector spaces of finite dimension d. Let {e;,,¢;, ..., €, } be a basis of V;. Let’s define
the following functions: @;,, i, : Vi X Vax -+ xV, = K (v1,...,0,) H?Zle}{ij (v;). Then the set ¢;, . ;. is a basis of
,,%(Vl,. . .,Vn;K).

7.1.2.9 Proof We do the proof for n = 2, since n = 1 is obvious. Then the generated case follows by induction.

Vi=(e1, .. ea), Va=(w1,...,wa,). ¢ denoted by & j(z,y) = e (x)w (y)(z € V1,y € Va).

To show that {&; ;} is a generated set: Take ® € Z(V1,Va; K), let A; j = ®(e;,w;) € K. O(z,y) = (X0, X, 8w;) =
Lijaif;®(es,wj) = i jaiBjAi, Let f =35 ;A & 5, f(z,y) = f(Eiae;, X;Biw;) = i jaiB;f(ei,w;) = Xijouj Ai j. So we
have proved that ; ; are system of generators.

Now we prove that ; ; are linearly independent: Assume that 3; jA4; ;& ;(z,y) = 0,V(z,y) € Vi x Vo. Put in (z,y) =
(ei,wj) = Ai,j =0 VZ,]

7.1.2.10 Prop Assume that Vi,..., V), are vector spaces and V; has basis given by {e;,,...,e;, }. Then B={e1;, ®...®
eni, 11 <15 < dj} is a basis for V1 ® ... ® V,,. In particular, V; ® ... ® V,, has dimension II,d;.

7.1.2.11 Proof Again we assume n =2. V3 = (e1,...,em), Vo = (w1,...,wn).
We knew that £ (V,Va; K) = (V4 @ V)Y s fs. Let’s check what happens when s = &; ;.

Recall that fe,  (z @) = & ;(z,y) = e (1)e) (). So fe., (ex @) = {1 if (i,5) = (k1)

] . Tt follows that {er @ w;}k,
0 otherwise. ’
is a basis of V] ® V5.

7.1.3 Tensor Product and Duality

7.1.3.1 Prop Let Vi,...,V, be vector spaces as above. Then (VY @...@V,Y) = (V1 ®@...@V,)".

7.1.3.2 Proof Define VY x -+ x V)Y = 2L2(Vi,....Vis K) 2 (V1 @...0 Vo)V (d1,---,0n) = [(V1,...,05) = I (v)].
This map is multi-linear. It descends by the property of tensor product to a map F: VY ®... @V, — L (V,...,Vy; K) =
(Vl ®R...Q0 Vn)\/ ¢1 ®R...Q (bn — [(’Ul, A ,’Un) — Hi(bi(vi)]-

By 7.1.2.10 Prop, these two spaces have the same dim Ild;. It is enough to show that the map is surjective. Let’s do

it for n = 2. (Keep the same notation as above.) Take &; ;, & ;(z,y) = e/ (v)e] (y) = F(ef @ e).

7.1.3.3 Prop Let V and W be two vector spaces (finite dim). Then Z(V,W) =X VYV @ W.

7.1.3.4 Proof s: VYV xW — Z(V,W) (¢,w) — [v+— ¢(v)w]. Let’s check that s is bilinear: ((¢ + ¥)(v))w =
(p(v) + Y (v))w = d(v)w + Y (V)w, ¢(v)(w + w') = we(v) + w'¢(v), so bilinear.
So it indices f, : VYV @ W — Z(V,W). We have to show that this is the required isomorphism.

Let {vy,..., vy, be a basis of VV and let {wy,...,w,} be a basis of W. Let’s see what happens to f(v; ® w;) = [vg —
vy (vk)w; = 0 pw;].
Let’s see what happens to fs(v; ® w;) = [vx = v (vk)w; = S; pw;].

L oaf (a7b) = (]71)

Consider the matrix associated to f, with respect to the fixed bases. Call this matrix My, = g
0 otherwise.

The matrices of this form are a basis of Z (K™, K™) = £ (V,W). The proof is over.

An important case of this prop is when V=W, Z(V,V) 2 V®V. More general, £ (V,W) - VYW f— Xa, ;v Q.
(a; ;) is exactly the matrix associated to f with respect to the bases {v;} {w;}. For instance V.= W, Idy € Z(V,V) —
Zi’l);/ & v;.

7.1.3.5 Prop Let M,N,P be R-modules. .Z(M ®r N; P) = Z(M,Z(N,P)).

7.1.3.6 Proof Use 7.1.3.3 Prop.
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7.1.3.7 Def Let My, My, N7, Ns be R-modules and let f; : M; — N; be linear maps. Then we define f1 ® fs : My @ My —
Ni ® No my3 @ ma — f1(m1) ® fa(mse). This is a linear map.

7.1.4 Extension of Scalars

Let ¢ : R — S be a ring homomorphism (commutative, with unity). Let M be a R-module. Our goal is to give to M also
a structure of S-module ”carried by ¢”.

Notice that S has a structure of R-module: s € S;r € R; rs := ¢(r)s. Now take the tensor product M ®g S. By def, it’s
an R-module.

Now we give a structure of S-module to M ®r S. Take s € S, m® s € M ®r S, s(m®s) : = m ® ss’ (s’ is the
multiplication in S). Note that M ®p S is a S-module.

Note that we have a map: i: M - M ®r S m— m ® 1 (map of R-modules). Be careful: In general, the map i is not
injective. e.g. R=7Z, S=7/27, a:7Z —7/2Z, M =7[t]. i(22) =221 =2(X®1)=X®a2) x1=X®0=0.

7.1.4.1 Prop Let K C L be a field extension and let V be a K-vector space. Moreover, let’s denote Vi, := V ®x L. If
{e;}1_; is a basis of V, then {e; ® 1} is a L-basis of V7, (V1 has the same dim of V).

7.1.4.2 Proof The set {e; ® 1} generates V. In fact, v ® I = (Baye; ® 1) = Xla;(e; ® 1). We have to show that the
elements are linearly independent. 0 = Yo, (e; ® 1) = Xe; ® a3 € L. Define the map b; : VX L — L (Z)\e;, ) — Af.
This map is bilinear.

It induces amap f; = fp, : (EXie;) @8 — A;f;. Note that f;(e;®8) = d; ;6. Go back to the expression: f;(Z;e;®a;) = oy.
But 0 = fz(O) = fi(Ejei & Oéj) = ay, Vi.

7.1.4.3 Remark As a consequence, we have that the map i : V — V, (map of K-vector spaces) is injective.

7.14.4 Prop VRg K=V v®ar av.

7.1.5 Exactness of the Tensor Product

Fix a R-module N, and consider _.@ N : M — M ®p N for any R-module M.

Moreover, for any linear map f : M — P, we induce a map f ® Idy : M ® g N — P ®z N. This association sends Id,
to Idprg,n and moreover, it’s well behaved with respect to the composition: fo i (fog)® Idy = (f ® idn) o (g ® idy),
g:M—P,f:P—FE.

1 2
7.1.5.1 Def A sequence of R-modules (chain complex of R-modules) is a diagram of the following form: M; 4, Mo LN

d? ; .
M3 — ---. d* are morphisms.

7.1.5.2 Remark d't'od =0« Im(d’) C d'tt.

Why? Some information about morphisms of R-modules can be nicely expressed in this language.

Here Vi M; is an R-module, d’ is a linear mapping, s.t. ker(d*1) C Im(d%). The sequence is ezact when ker(d*1) =
Im(d?), Vi. 0 — M LN 50 fisan isomorphism, iff the complex is exact.

Take a morphism f: M — N, then f is injective iff 0 - M IoN s exact, f is surjective iff M o N = 0 is exact.

The first theorem of homomorphism (namely, Im(f) = f(M/ker(f))) can be written as an exact sequence: 0 — ker(f) -
M L m(f) > o.

More in general, sequences in the form: 0 — M; — My — M3 — 0 are called short exact sequence.

N,P is an R-module; we have morphisms of R-modules: VM, M — M ®gr N. Let f : M — P be R-linear. f ®idy :
M®rN —->PRrN men— f(m)Qn.

Assume that we have a short exacct sequence of R-modules.

O‘)Ml LMQ&Mg‘)O

Let us transform this by adding all — ® g N, it becomes:

0= M, ®r N L2 0 @ N 2255 M @p N 0.

Example: Use the same construction before and the first mapping is zero mapping, which is not injective.

7.1.5.3 Exercise(Important) If R=K, then — @ x N (where N is a finite dim vector space) is exact. Hint: use the
bases.

7.1.5.4 Answer Let (e;)_; be abasis of N. Vo®@n € M;®N can be written as the form X7, a;®e;. fQidy(E1 a;®e;) =
¥, f(a;)®e;. Since {e;} is a basis, one can construct a projection mapping to show f(a;) = 0, Vi. The concrete construction
islet s; : My x N — My (m,n) — e (n)m, which is bilinear, which induces fs, : Ma @ N — M,
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7.1.6 Tensor Algebra

Fix a vector space V over K of finite dimension.

Let us denote: (V) := (VV)®*P @ V¥ pqeN.

An element of Tg(V) is called a tensor of type (p,q) or a mixed tensor, which is p-covariant and g-contravariant.
Let’s denote: T(V) := @2, 75 (V), then:

o« TO(V):=K.

« TO(V)=VV.

o« TN(V)=V.

e TH(V)=VVRVZ2(V;V)
V)

0T20

In T'(V') we have the following operation:

THV) X TE(V) = ToH (V) (21@22®...00), (11 @9 @...0Y) = (21 @120 ...01) @ (11 @Y @ ... @ y,) and
we can extend it by linearity.
With this operation, T(V) becomes a K-algebra. It’s called the tensor algebra associated to V.

7.2 Exterior Product

7.2.1 Def

Let W be the two-sided ideal of T(V') generated by the elements of type z ® x.

W = {Zfinite z(yl ... ®ymb) ® (xi 0 xz) ® (Zi ®...® Zn;) DT Yi, 2 € ‘/a N5, M; € N}

The quotient algebra A(V) := T(V)/W is called the exterior algebra of V, which is a K-algebra.

7T TV)=>AV) 210..0x, » (1 ®...QxT,) =1 A+ ATy,

N'(V) :=T3(V)/(WUTF(V)) and we call it n-fold wedge product, and we can use it to define A(V) = @,—, A"(V),
and we call it extension product.

7.2.1.1 Prop Let o €Sy, then x1 A--- Az, =5gn(0)Tr(1) A A Zo(n)-
7.2.1.2 Proof Since any permutation can be written as the product of adjacent transformations, it is enough to do the
proof for o = (i, + 1).

0= (fL’l + 1'7;+1) A (1'7, + .’Ei+1) = (IEZ A .’Ei+1) + (ZL'iJrl A (El)

7.2.1.3 Question Can the exterior algebra be defined in a similar way?

7.2.2 Alternating

V is a K-vector space, a multi-linear map ¢ : V. x V x --- x V. — W is called skew-symmetric (or alternating) if
é(z1,...,2,) =0 when 3i # j s.t. z; = z;.

7.2.2.1 Prop Fix a vector space V. V alternating multi-linear map s : V™ — W when W is another vector space, there
exists a unique linear map gs : A"V — W s.t. the following diagram commutes.

vn —= s W

7.2.2.2 Proof gi(vi A---Awvy):=5(v1,...,0,).

7.2.2.3 Remark/Exercise The couple A"V with V x --- x V — A"(V) that satisfies 7.1.7.5 Prop, is unique up to
unique isomorphism.

7.2.2.4 Notation automorphism is an isomorphism f:V — V.
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7.2.2.5 Prop Let V be a vector space of dimension n with a basis {e1,...,e,}. Then /\k(V) is a vector space with a
basis given by B={e;; A---Ae;, 1 1<y <+ <ip <n}.
In particular, A"(V) has dimension ().

7.2.2.6 Proof B is clearly a generating set. The different part is to show that B is made up of linearly independent
elements.
if 31 € S1,7(m) = im
[ (insen k) With 1 < iy < -+ < ig <, define: g1 : V- XV 5 K (ejr...e5) s 4 29T) 4 37 € Sp7(iin) =1
0 otherwise.

®; is multi-linear and alternating, hence it induces a linear map.

O1 = go; ° N'(V) = K defined as above.

Assume that 0 :16 /\k(V) = 21§j1<"'<jk§">\j17~--7jkej1 N Nej, .

By linearity, 0 = ¢7(v) = £A;. Do it for any possible I. This shows that any A, ; =0.

7.3 Determinant

7.3.1 Def

Let V be a vector space of dimension n, then det(V) := A"(V) is called the determinant of V. It’s a vector space of
dimension 1 = (Z) and a basis is given by e; A--- A e, when {ej,...,e,} is a basis of V.

Let f € Z(V;V), then consider f : VE — A"(V) (v1,...,v1) = f(v1) A -+ A f(vg), ans this is multi-linear and
alternating. Therefore, it induces a map gz. Since det(f) has dim 1, det(f) : vi A+ Awvp = dety x(v1 A-o- Awy) =

flo) A A f o).
By abuse of notation, we identify det(f) = dety.

7.3.1.1 Prop fe . Z(V,V)is invertible iff det(f) # 0.

7.3.1.2 Proof fisnotinvertibleiff {f(e1),..., f(en)}is not a basis iff there is a non-trivial linear combination: ¥;\; f(e;) =
0. After relabeling the e;, we can assume f(e1) = Z;>apif(es).

Sodet(f)(e1A---Nep) =dety x(e1A---Aey) = (Zizops f(ei)) A flea) A+ A flen) = Bisapi(f(e) Nfle2) A---Af(en)) =0.
7.3.2 Binet Theorem

det(f o g) = det(f) o det(g).

7.3.2.1  Proof det(fog)(ern---Aen) = (fog)(er)A---A(fog)(en) = f(g(er))A---Af(g(en)) = (det f)(g(e)A---Ag(en)) =
det(f) odet(g)(ex A--- Aep).

7.3.3 Determinant

f:V = Wis alinear map, k € N. A"f : A*(V) = A"(W) w1 A~ Awg = f(v1) A==+ A f(vg). When V=W,
n=dim(V), A"(V) =det(V); A" f = det(f).
In this case we identify det(f) with an element of K.

7.3.3.1 Prop The determinant of f is equals to the determinant of any matrix that represents f with respect to a fixed
basis. This doesn’t depend on the choice of the basis.
Fix f e Z(V;V), let {v1,...,v,} beabasisof V,b:e; —»v; ¢ ={0,0,...,4,...,0}.

v 1 v
b b
Ay

Take \"(-):

det(V) 2 qet(v)

A a

b
det(K™) *M%) qet(Km)

Af=b"to fob=det(As) = N"(b)~! x det(f) x A\"(b) € K.
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7.3.3.2 Upper Triangular Matrix Let A be an upper triangular matrix. det(A)(eg1 A---Ae,) = Aler) A---ANAlen) =
(ar1e1) A (a12e1 + aszea) A=+ A(apner + -+ appen) = (Hla;)et A+ Aey,. So det(A) =T a, ;.
1. A= (a;;). If one column of A can be expressed as a linear combination of other columns of A, then det(A) = 0.
The columns are images of {ey,...,e,}, means that A(ey),..., A(ey,) are linearly dependent, which infers to A is not

an asomorphism, det(A4) = 0.

2. If we exchange two columns of A, then det(A) changes sign.

7.3.4 The First Method to Compute the Determinant

Let (a;,;) be a matrix of dimension n x n. Then det(A) = Xocs, sgn(o)I}_; ay();-

7.3.4.1 Proof Let {v1,...,v,} be columns of A, v; = A(e;).
det(A)(er A---Nen) = Vi A Avy = (Sia 1) A+ - AN (Bi05n€i) = Loes, Hitoiieo) N - Negny = (Bosgn(o)liaq ) i)er A
N ep.

7.3.4.2 Corollary det(A) = det(AT).

7.3.4.3 Proof A" = (ai,j),A = (ai,j),Vi,j Q5 = O 4.
det(AT) = Xo8gn(0) ity (), = Bosgn(o)ILia; o) = Lo-15gn(o~ ) Ija,—1(;); = det(A). It’s easy to prove that sgn(o ') =
sgn(o).

7.3.5 The Second Method to Compute the Determinant

Fix A of dimension n x n. Apply Gauss Reduction, A’ is it’s upper triangular matrix. By the properties listed above,
|det(A)| = |det(A’)|, but on A’, the determinant is just the product of elements on the diagonal. So this is the second
method to compute the determinant.

Fix A = (a;j). Denote with A j; the (n — 1) x (n — 1) matrix obtained after removing the i-th and j-th column from A.

7.3.6 The Third Method to Compute the Determinant(Laplace Expansion of the Determi-
nant)

Let A = (a;;), then det(A) = X7_, (=1)"a, jdet(A; ;) Vie{l,...,n} =57 (=1)"a,; jdet(Ay ;) Vje{l,...,n}

7.3.6.1 Proof
A

K" ——— K"
Kn-1 Ali.i) Kl

{€e},... e} is a standard basis of K".
{e1,...,e,_1} is a standard basis of K™1.
e

T_(e_)_{l ifi<j
g\€i) =

eli+1 ifi>j

!/

. Now take A"~ of the diagram:

/\n—l Kn AN*HA /\n—l K"

AT TJT J{/\"‘1 pi

det(Ap; 5
det(Kn=1 A0 et (1)

det(A)(ef A---Ael)

= (1) tdet(A) (e, Aef A A€y ANl Ao Ael)

= (1) A(e)) A A(er) A NA(eq) NA(€l ) A A Alen)

(1)1 Ae /\Ae1 A€y Nei g N Nel) = (%)

Let mj : K™ - K™ (z;) = (0,...,2j,...,0), then A =X;(m; o A), it means that:
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(%) = (1) " A(e)) A /\ A€ NE A Ne)

n

= (- )’ 1A ) A /\ mjoAor)(er A Aep_1)

= Sy ((=1)" akzek/\/\ mjoAoT)(et N Nep_1))
n—1
_ i—1 ’ _
= Sk((=D) " ariel A\ (pro Aom)(er Are Nen_t)) = ()
Here py := m — idgn.

n—1 n—1

(#%) = (=1 Lag i) A /\ Tj © /\ (proAom)(er A Nep_1)

By the diagram, /\"_1(pk o Aot;) = det Ay, g, s0:

(k%) = (= 1) Lag; det(Ap i) (e Ney A= Nep_ 1 ANej g A Nep) = Ye(—=1)ftag, det(Ap,q) (e} A--- Ney,)

n

7.4 The Structure of Linear Mappings

7.4.1 A Set of Theorems

Let f:V — W be a linear mapping between vector spaces of finite and same dim. Then:

1. There exists a decomposition V = Vo @& V4 and W = Wy & Wa s.t. Vp = ker f and f includes an isomorphism between
V1 and Wi (namely f |y, ).

2. There exists a basis in V and W s.t. the associated matrix Ay = a;; satisfies V1 < ¢ <7, 3r < n have a;; = 1 and have
a;; = 0 elsewhere.

3. Let A be a m x n matrix. Then there exists two square matrices (with det # 0) B and C of dim m x m and n x n and
a number r < min(m,n) s.t. BAC has the form in (2). Moreover, the number r is unique r = rank(A).

7.4.1.1 Invariant Subspace Let F:V — V be a linear mapping. A subspace Vj C V is said to be an invariant subspace
of F'is F(Vp) C V.

7.4.2 Diagonalizable
A linear mapping f : V — V (finite dim) is diagonalizable if the following equivalent conditions are satisfied:
1. V decomposes as a direct sum of a one-dimensional invariant subspace of f.

2. There exists a basis of V, in which the matrix A is diagonal.

7.4.2.1 Proof

A
2 = 1 Assume that in the base {vi,--- ,v,} , we have Ay = by the familiar diagram
An
v—L v

A
Kn L Kn
f(Ul) = b [¢] Af(ez) = b()\lel) = )\ﬂ)i S <’Uz>

So
V=(u)® - & (vn)

1 = 2 Assume that V = (v1) @ - -- @ (v,,), where f((v;)) C (v;) , then {vy,--- ,v,} forms a basis of V.

Consider the previous diagram

A(el) =b'ofo b(ei) = bil(f(vi)) = bilo\ﬂ%) = \ie;
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7.4.2.2 Example Take

5 5 cos sin 6
A:R* >R A= )
—sinf cos@

A is not diagonalizable.

7.4.2.3 Def Let L be a one-dimensional invariant subspace of f : V' — V . Then F |1, is a multiplication by a scalar
A € K. Such A is called eigenvalue of f. A non-zero vector v € V' is called an eigenvector of V' if (v) is an invariant subspace

of f.

7.4.2.4 Direct Sum(Recall) @, Vi = {(z:)ien all but finite many z; = 0}.
TEV)XTHV) > TE(V) (=210 X R@2p,y =y1 @ X Yy = TR Y.

7.4.2.5 Remark/Exercise Assume that f is diagonalizable and Ay is the diagonal matrix that represents f. Then A is
unique up to permutation of the elements in the diagonal.

7.4.2.6 Hint V=<v1>& --- & <wv, >=< Vo(1) > B B < Vgn) >, 0 € Sh,.
Let V be a vector space over K. dim(V) =n, f € Z(V,V). Let Ay be an associated matrix in any basis. The map:
K — K t—det(tl, — Ay).

This is a polynomial in K[T].
7.4.2.7 Lemma P(t) is a monic polynomial of degree n.

7.4.2.8 Proof P(t)=det(tl, — Ay) = Xosgn(o)II}_;(t0,(:),i — Av(i),i)-
The only term that gives ”t"” is when o = id.
7.4.2.9 Theorem Use the notation introduced previously.

1. P(t) doesn’t depend on Aj (if you change basis, P(t) doesn’t change).

2. Any eigenvalue of f is a root of P(t). Conversely, any K-root of P(t) is an eigenvalue.

7.4.2.10 Proof

1. Put A= Ay, and let A’ be another matrix presentation of f. Then A’ = B~'AB where B is invertible n x n matrix.

det(tI, — A") = det(tl,, — B"*AB) = det(B~*(tI,)B — B~'AB = det(B~1(tI,, — A)B) = det(tl,, — A). (Because
(ADJA = A(AT)).

2. Let XA € K be a K-root of P(t), then: det(\,, —Ay) = 0= P()). AI,, — Ay is not invertible, so Jv # 0 € ker(AI,, — Ay),
Ar(v) = M.

Viceversa (the other implication) if, o # 0, f(v) = v, v € ker(Al,, — Ay), det(Al,, — Af) =0 = P(N).

7.4.3 Characteristic Polynomial

The polynomial P(t) will be denoted by Py(t). It is called the characteristic polynomial of f.

7.4.3.1 Corollary If Py(t) splits with no respected roots, then f is diagonalizable.

A1 0 0
O X1 ... 0
7.4.3.2 Def A matrix of the form J.(A\)=1|. . . . .| is called a Jordan block.
0 0 O A
Iry (A1) 0 0
A Jordan matriz is a matrix of the type J = 0 Jry (A2) 0
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7.4.3.3 Example Let V,()) be the vector space of complex functions: {F : C — C : F(z) = e’ f(x), where A\ € C f €
Clal<n-1} = Va(N).
Verify that V,,(\) is a vector space of dim n

9 (P rf(x) = AN f(2) + N f(x)

dx
= (A f(2) + f'())

i

e Z(V,o(N); Va(N)). Consider v;41 = L. Show that {vg, - ,v,_1} forms a basis of V;,(\)

d xi_l Az
%UHI = Avjp1 + me
= A0ip1 + 0y
Then
A0 0
=10 = ()"

U
0 1 A

7.4.4 Annihilate

Let ag + ait + -+ + ant™ = Q(t) € K[T], then for f € Z(V,V), we define Q(f) := agld, + a1 f + -+ + a, f°f. From now
on, we denote f* := fok,
We say that Q annihilates f is Q(f) = 0.

7.4.4.1 Prop Let f e Z(V,V). There exists a polynomial @ € K[T]\{0} that annihilates f (i.e. Q(f)=0).

7.4.4.2 Proof dim(Z(V,V)) = n?. Hence the maps Idy, f, f2,....f* € Z(V,V) are linearly dependent. So there
exists a non-trivial linear combination: AgIdy + A1 f + -+ + A,z f"2 =0, so take Q(t) = Ao+ Mt +--- + )\nztnz.
This shows that @ # 0, and Q(f) = 0.

7.4.4.3 Remark The proof of the Prop also gives the degree of a polynomial that annihilates is < n?2.

7.4.4.4 Minimal Polynomial Let m(t) € K[T]\{0} be a monic polynomial of minimal degree that annihilates f €
Z(V,V). Then m(t) is called minimal polynomial of f.

7.4.4.5 Prop If m(¢)is a minimal polynomial of f, then it’s unique.

7.4.4.6 Proof Assume that m;(t) is another minimal polynomial, then m—my € K[T]; (m—m1)(f) = m(f)—m1(f) = 0.
Since m and m; are both monic, so deg(m —m;) < deg(m) is smaller, contradiction!

7.4.4.7 Notation From now on we denote the minimal polynomial of f with m .
7.4.4.8 Prop Let Q€ K[T]\{0} a polynomial that annihilates f. Then my | Q.

7.4.4.9 Proof By the division between polynomials: Q(t) = my(t)s(t) + r(t) s.t. deg(r) < deg(mys). So 0 = Q(f) =
me(f)s(f)+r(f) =r(f). Sor(f) must be zero.

7.4.4.10 Adjugate Matrix Let A be a matrix of dim n x n, M;; := (=1)"7 det(A; ;1) € K. Here det(Ay; ;) is called
(i,7)-minor of A.
Then we define Adj(A4) € Myxn(K) = (M; ;)

;.j» called the adjugate matrix.
7.4.4.11 Lemma AAdj(A)= Adj(A)A =det(A)I,.

7.4.4.12 Proof Exercise.

7.4.5 Cayley-Hamilton Theorem

The characteristic polynomial p; annihilates f. Consequence, my | py.
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7.4.5.1 Proof Let A= A;any matrix that represents f. Consider B := Adj(tl,,—A), then (tI,, —A)B = det(tI,—A)I, =
ps(t)I,. We can decompose B in the following way: B = E?:_OltiBi, B; € My xn(K).

So Py(t)I, = (XMLt B;) — (X1 AT'B;) = X+ B; — XA B, = t"B,,_1 + X' 't(B;_1 — AB;) — AB,.

We can compare the coefficients, and both times A%, the equation became A"B,_; + E?;ll (A'B;_; — A™1B,) — ABy =
0=A"+c, 1 A" '+ + 1A+ col,, = Pp(A), so ps(f) = 0.

Here ps(f) = ps(C7LAC) = det(tl,,—C~1AC) = det(C~1(tI,,)C—C~rAC) = det(C~1(tI,—A)C) = det(C~1) P (A) det(C)
pr(A).
7.4.5.2 Examples

1. my and py are in general different. f =idy, then py(t) = (t —1)",mys(t) =t — 1.

2. Assume that f: V — V and dim V=r, A; = J,(A). Then p;(t) = (tOX)". Moreover, J,.(A) = AI, + J,(0), and if k > r,
(J-(0)k =0. (J,(\) = AL)F = (J.(0)F#£0if0<k <r—1.

We know that my | (t — A)", m; must be of the type m; = (¢t — \)¥, but the only possibility is k = 7. So m; = p;.

For Jordan blocks, the minimal polynomial is equal to the characteristic polynomial.

7.4.5.3 Algebraically Closed Field A field K is algebraically closed if any nonzero polynomial has a root in K.

7.4.6 Theorem

Let f € Z(V,V), where V is a vector space of dim n,over an algebraically closed field. Then:
1. f can be represented by a Jordan matrix.

2. The above matrix is unique up to permutation of Jordan blocks.

7.4.6.1 Root Vector Let f € Z(V,V)andlet A € K. A vector w € V\{0} is called a root vector of f corresponding to
A, if there exists m € N, (f — Aidy )™ (w) = 0.

7.4.6.2 Remark Eigenvectors are root vectors that take r = 1.

7.4.6.3 Remark Let f = J,.(\) be a Jordan block. Then any v € V is a root vector of f corresponding to A. In fact:
Yo, (Jr(A) = AL)™(v) =0 m>r.

7.4.6.4 Prop Let V() be the set of root vectors of f corresponding to A. Then V() is a vector subspace of V. Moreover,
V(A) # {0} if and only if X is an eigenvalue.

7.4.6.5 Proof Take vi,vs to be A-root vectors. Assume that
(f = W)™ (00) = (f — ATd)" () = 0.

Take r = max{ry,r2}, then
(f — )\Id)r(vl + ’U2) =0.

For any a € K, if (f — AId)"(v) = 0, then
(f = Md)"(aw) = 0.

Assume A is an eigenvalue. Then there exists an eigenvector v # 0 s.t.
(f = Ald)(v) = 0.

Conversely, take 0 # v € V()). Let r be the smallest integer s.t. (f — Ad)"(v) = 0. Since v' = (f — \Id)"~!(v) # 0 and
(f = AMId)(v") =0, v’ is an eigenvector of A, which means )\ is an eigenvalue.

7.4.6.6 Prop Let K be an algebraically closed field. Let A1,---, A be the set of all distinct eigenvalues of f (k > 1).
Then
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7.4.6.7 Proof Since K is algebraically closed, the characteristic polynomial Ps(t) can be factored as

k
Pr(t) =[]t = x)™ € K[T].

i=1

Consider
Fi(t) = Pr(t)(t — X\)~" € K[T).

Define f; := F;(f) € End(V) and V; = Im(f;).
We want to prove that (f — \;Id)™ (V;) = 0, which means V; C V(\;). Note that

(f =Add)" o fi = Ps(f) =0.
Next, we prove that V' =V; + -+ + V. The polynomials F;(¢) are coprime. There exist polynomials G;(t) € K[T] s.t.
1 =ged(Fi(t), -, Fi(t) = Fi(t)Gi(t) + - + Fr(t)Gr(t).

Applying f to both sides, we get

k
D> Fi(f)oGi(f)=1d
For any v € V,
k k
v=>Y F(NGi) =Y fi(Gi(v)) eVit- -+ Vi CV(A) + -+ V().
i=1 i=1

To show that the sum is direct, take 1 < ¢ < k and suppose v is in the intersection V; N (Zj# Vj) Then

(f =AId)"(v) =0 and  F(f)(v) = [J(f = \1d)" (v) = 0.
J#i
Since (t — ;)™ and F;(t) are coprime, there exist polynomials G (¢) and Ga(t) s.t.
G1(t)(t — )" + Ga(t)Fi(t) = 1.

Substituting f for ¢, we get v = 0.
Finally, we prove that V; = V(\;). Take v € V(\;) and write it as

v:v’—l—v”EViGSEBVj.
J#i

Then v/ = v —v" € V(\;). There exists some r € N s.t. (f — N\Id)"(v"”) = 0. Since (t — A;)" and F;(t) are coprime, there
exist polynomials Hy(¢) and Ha(t) s.t.
(t— X)) Hi(t) + Fi(t)Ha(t) = 1.

Hence, v/ =0 and v =" € V.

7.4.7 Nilpotent
Let f € Z(V,V). Then f is said to be nilpotent if there exists z € N s.t. f* =0.

7.4.7.1 Lemma Let f be a nilpotent map. Then ker(f)f = {set of eigenvectors of f} U {0}.

7.4.7.2 Proof Let v € ker(f), then v is an eigenvector with eigenvalue=0.
Let v be an eigenvector of f with eigenvalue A. Then

f(v) = dv.
Applying f repeatedly, we get

Jw) = FrNI) = 7 0) = AT ) = = X
Since f is nilpotent, there exists m € N s.t. f™ = 0. Therefore,
0=f"(v)=\".

Since v # 0, it follows that A™ = 0, which implies A = 0.

7.5 Jordan Normal Form

7.5.0.1 Lemma Let f be a nilpotent mapping, then Ker(f) # {0}.
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7.5.0.2 Proof Let r be the minimal integer s.t. f" = 0. Then f"1(V) C Ker(f), but f"~1(V) # {0} due to the

minimality of r.

7.5.0.3 Remark Another way to prove the above lemma is to notice that m; = 1< <r. By the Cayley-Hamilton
theorem, 0 is an eigenvalue, thus f(x) = 0 for some z # 0.

7.5.1 Theorem (Jordan form for nilpotent mappings)

Let f be a nilpotent mapping. Then there exists a Jordan basis for f, which means that this basis gives a Jordan matrix
made of blocks of the type J,.(0) for f.

7.5.1.1 Proof Proof by induction on the dimension of the vector space V. If dim(V) = 1, then f =0 and 0 = J;(0).
Assume that the induction is true for dim(V') < n, then we prove it on dimension n. Let Vy = Ker(f) = {the set of eigenvalues
{0}. Since f is nilpotent, dim(Vp) > 1. Therefore, dim(V/Vy) < n. Define the following mapping f € End(V/Vy), v — f(v).
It is well defined and nilpotent. We use the induction hypothesis, so we have a Jordan basis for f, and thus we have elements
T, Tm € V/Vo.
Now lift ; to some elements v; € V. Applying f to these elements v;, b; is the first integer s.t. f% (v;) = 0. This means
that % (v;) € Vo, hence f% (v;) is an eigenvector.
Consider now the vector subspace generated by f¥(vy),---, o= (v,,):

(frr (1), fom (vm)) € Vo

Extract a basis and complete it to a basis of V. The new vectors are denoted by wq,- - ,u;. Then we want to prove that
f¥(v;),u; forms a basis of V.

_ bi—1 bi—1

LetveV,m(v)=v=>3 " 122520 @if? () = > 122420 @iif? (v;).

Hence v — Y 1", ;”:_01 a;; f7(v;) € Vo, this finishes because Vp is generated by fo1(v1), -+, fo (vmn), ur, -+« , uy.
We show that f% (v;) and u; are linearly independent:

m t
Zaifb" (v;) + Z b;ug = 0.
=1 =1

The first observation is that b; = 0,Vi. So
O—Zasz ) = <Zalfb ) |

So 3ity aif* " (vi) € Va.

This means that Y i, a; f~1(v;) = 0. Hence a; = 0, Vi.

By applying f to > ", Z? Bl aij [ (v;) + 25:1 b;u; = 0 many times, one can prove that {f*(b;),--- ,u;} forms a Jordan
basis of V.

7.5.1.2 Prop The Jordan matrix that represents a nilpotent mapping f € End(V) is unique up to permutations of the
blocks.

7.5.1.3 Proof f% (v;),u; forms a basis of Ker(f), thus these elements have exactly dim(V;) elements, which is independent
of the choice of basis.
Let’s look at the elements like f%~!(v;). If we work by induction, then the proof is finished.

7.5.2 Theorem

Let K be an algebraically closed field and f € End(V). Then f admits a Jordan basis. Moreover, the Jordan matrix is
unique up to permutation of blocks.

7.5.2.1 Proof Since K is algebraically closed, V.=V (A1) ®--- ® V(Ag), where Ay, -+, Ay are the distinct eigenvalues of
I

Now consider fly(x,) =g, Ai = A. If we prove the theorem for g, then we are done.

g — Ald € End(V (X)), this function is nilpotent on V' (A). In fact, you choose a basis of V(A), then pick the largest p of
them.

Apply the theorem for nilpotent mappings to g — AId. Then we have J; — AId made of blocks of the type J,.(0).

Take the matrix J;, — AId. Restrict to a block J,.(0). g — A\Id = P~1J,.(0)P. I want to show that with the same P,
J-(0) + M. = J.(A\). This is a Jordan block for g. In fact, J,.(A) = P=Y(J.(0) + A[,)P = g — A\Id + \Ild = g.

The uniqueness follows from the uniqueness of the J,.(0).
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7.5.3 Geometric Multiplicity and Algebraic Multiplicity
Let A be an eigenvalue of f € End(V).

E(X\) = Ker(f — Md) = {all eigenvectors of f with A} U {0} C V(A).
This is called the eigenspace of A. mult(\)geo = dim(E())) is the geometric multiplicity of A\. Moreover, mult(A)ag =
max{k € N, (t — \)¥|P¢(t)} is the algebraic multiplicity of .
7.5.3.1 Prop Let K be an algebraically closed field. Then mult(\)geo < mult(\)aig, V eigenvalue of f.

7.5.3.2 Proof V=V(\)® &
Pr(t) =TI — X)) dim(V (). dim(V (A
Since E(A) € V(A), then dim(E()))

7.5.3.3 Corollary Let K be an algebraically closed field, let f € End(V'). f is diagonalizable iff mult(\)geo = mult(A)aig, VA.

7.5.3.4 Proof Work on a single V()). r = dim(V (X)) = mult(\)aig.
We get a diagonal Jordan matrix iff we have exactly r blocks of length 1. It means that r = dim(Ker(f — A\Id)) =
mult(A) geo-



Chapter 8

Inner Product Space

8.1 Inner Product

8.1.1 Bilinear Form

Let V' be an n-dimensional vector space over K (where K =R or K = C).
A bilinear form g € £ (V xV, K) is called a bilinear form. Choose a basis {v1,--- ,v,} of V. The matrix G = (g(v;,v;))i; €
M, wn(K) is called the Gram matrix of g with respect to {v1,- - ,v,}. By linearity, G determines g uniquely.

8.1.1.1 Remark Forall (z,y) eV,
g(z,y) = inng(vi7vj) = QTGQ.

ij
On the other hand, given a basis {vi,---,v,} and G € My, (K), the mapping V x V' — K, (x,y) — 27 Gy, is a bilinear

form, and the associated Gram matrix is exactly G.
Fixed a pair (V,{v1,--- ,v,}), we have defined a bijection:

LV xV,K)=Myn(K), g—G.

8.1.2 Conjugate

Two matrices G, G' € M, «,(K) are said to be conjugate if there exists A € GL(n; K) s.t. G’ = ATGA. Notice that
conjugacy is an equivalence relation.

8.1.2.1 Notation The Gram matrices of an inner product under different bases are conjugate.

8.1.2.2 Remark

g(v X VvK) gg(TOQ(V)?K) gg(vvvv)v g gs = (gS(I(X)y) = g(l’,y)) = (IHQS(I@))) ::g

8.1.2.3 Def Given g € Z(V xV,K), define gp(z,y) := g(y, ), Gp(z,y) := gp(z,y) = g(y,z). Notice that if K =R, then
9p = Gp-

A bilinear form g is said to be:

e Symmetric if g = g,.

e Symplectic or skew-symmetric if g = —g,,.
e Hermitian if g =g,.

8.1.2.4 Example
o K" x K" = K, (z,y) — a7y is symmetric.
o C"xC" = C, (z,y) — 2"y is hermitian.

o K2 x K? = K, (v1,vs) + det(v1|vs) is skew-symmetric.

8.1.2.5 Def ge Z(V xV,K) is an inner product of V if g is either symmetric, symplectic, or Hermitian.

93



94 CHAPTER 8. INNER PRODUCT SPACE

8.1.3 Orthogonal

Let (V, g) be an inner product space. Two vectors vy, vs € V are orthogonal (with respect to g) if g(vi,v2) = 0.
Two vector subspaces Vi, Vo C V are orthogonal if g(vi,vs) = 0 for all (vy,vs) € V5 x V5. Notice that:

o If g is symmetric, then A = A".
o If g is symplectic, then A = —A".
e If g is Hermitian, then A = A7,

Here A is the matrix presenting g.

8.1.3.1 Def Let (V,g) be an inner product space. The kernel of ¢ is defined as: Ker(g) = {v € V | g(v,w) = 0,Yw € V}.
Moreover, g is said to be non-degenerate if Ker(g) = {0}.

8.1.3.2 Remark Note that Ker(g) = Ker(g) when g € Z(V,VV).

x € Ker(g) means g, = 0, which is equivalent to g(x,y) = 0 for all y € V. This implies that Ker(g) is a linear subspace
of V.
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Differential Forms in R"

9.1 Differential Forms

9.1.1 Def

Let p € R™ be a fixed point. R} = {p} x R", (p,a) € R}, a € R". Define the operations: (p,a) + (p,b) =
(p,a+0b), ap,a):=(p,aa), VaeR.

With these operations, R} is a vector space over R. a|, denotes (p,a), and a basis of R} is denoted by {e1lp, -, enlp}-

R? is called the tangent space of R™ at p. The dual space (R})Y = {p} x (R™)Y. The dual basis is denoted by

{dz1lp, - dwnlp} = {(ealp)”s -, (enlp) '}
R™ x R" = |_|p€]Rn R7. |_|p R} is called the tangent bundle of R™. We have a projection mapping: = : |_|p€Rn Ry —

R", al, — p, and 77 (p) = Ry.

9.1.1.1 Remark
Ox; 1 ifi=y,
=dzi|p(eilp) =
O0x;j ilp(esly) {0 otherwise.

9.1.1.2 Def
k

®Bp) == P AR

keN

Consider /\k(RZ’})V ~ (A" R7)Y. The basis of this vector space is:

{daislp A Aday[p | 1<y < oo <idp <}

dim (/K(R;)V) = (Z)

k
|_|</\<R;?>V> SR S

p

is induced by the natural projection map.

9.1.2 Exterior k-form

An exterior k-form in R” is a mapping:

k
wiR = | </\(R§f)v> , pw(p),
P
that is a section of the projection 7. 7 ow = Idg» means w(p) € /\k(R;})V. For all p € R,

w(p) = Z a‘i1,'“>ik(p)dxi1|p/\ Adwik'ﬁ'

1<) < <ixg<n

Fix w, if all a;, ... ;, are differentiable of class C™, then w is called a C"™-differential k-form. If m = 400, then w is a smooth
k-form.

9.1.2.1 Notation w=)>,ardzr, I= (i1, i)

95
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9.1.2.2 Example Taken =4.

e 1-form: w = aidry + asdxs + asdrs + asdr,.
1
w(p) = a1(p)dx1|p + az(p)das|, + as(p)das|, + as(p)dal, € /\(Ré)v.

o 2-form:

w = a12d$1 A dLEQ + algdl'l AN di[,’g + a14dx1 AN dl’4 + G,dilL'Q AN dl’g + a24dx2 A d1'4 + (134d$3 A d$4.

e 4-form:

4

w(p) = a1234(p)dx1|p A dxal|p A dxs|, A dzal, € /\(]Rf))v.
9.1.2.3 Remark When k£ =0, a C™-differential O-form is a mapping f : R™ — R of class C"™.
9.1.2.4 Def Q’(“m) (R™) := {set of C"™-differential k-forms}.

9.1.2.5 Prop Q’(“m) (R") is a module over QF,  (R™).
0.1.2.6 Proof w.y e QR (w+n)p) = wlp) - np). f € VEY), we W@, fwe FE), (fo)p) =
f(p)w(p).

9.1.2.7 Notation We use df|, to denote the differential of f at p.

9.1.2.8 Remark Let f : R" — R be a differentiable mapping, then its differential df|, : R} — Rpy) = R, thus
df|, € (Ry)Y. Since df|, € (R})", hence df|, = > fi(p)dxil,. By definition, f; are the partial derivatives of f. This means
df is a differential 1-form.

Moreover, F' : R" — R™ differentiable then ' = (Fy,---,[F,), where F; : R" — R is differentiable dF'[, : R} —
RE () - AFilp = dai|pp) (dF |p) = d(wi 0 F)lp.

9.1.2.9 Notation Using the definition, we can derive:

of
8;16,-

of
(r“)xi

(p) = dflp(es), thus dflp(h)zz (p)hi-

Therefore, f; is the i-th partial derivative of f at point p.
9.1.2.10 Def Q(,)(R") := D, 2, (R").
We define a wedge product on Q(R™):
QF(R™) x Q(R™) — Q*THR™),  (w,n) = wAn.
Take w =), ardrr, n=">_;byx;. Then:

W/\U::ZaledeJv I:(ily"'aik)7 Jz(jh'")jl)? 1j:= (i17"'aikaj15"'ajl)'
IJ

9.1.2.11 Exercise Take w € Q¥(R"), n € QI(R"), p € Q¥(R™). Then:
L (wAnAp=wA(nAp)
2. (wAn) = (=" Aw)
3. Take 0 € *(R™), wA(p+0)=wAhp+wAb

9.2 Pullback of Forms

9.2.1 Def
Let f : R® — R™ be a mapping of class C"!. It induces a mapping:
590 R™) = Q6 (R, we frw.
AR(VY) 2 (AFV)Y 2 {¢p: V x --- x V — K | 4 is multilinear and alternating},

hence by abuse of notation:

(frw)(P)(vr, -+ s ve) = w(f(P))(Aflp(v1), -+, df[p(vr)) == w(F () (Af[p(vr) A~ Adflp(or))-
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9.2.1.1 Prop Let f:R” — R™ be a differentiable mapping. For w,n € QF(R™) and g : R™ — R a differentiable mapping
(g € Q°(R™)), the following hold:

L f(wH+n) = ffwt+ [y
2. f*(gw) = f*gf*w where f*g:=go f

3. fwy, -+ ,wg are 1-forms in R™, then f*(wi A+  Awg) = ffwr A A ffwy

9.2.1.2 Proof

L frw+n)p) (o1, o) = (@ +n)(f ) |p(v1), - df|p(ox)) =
w(f (A lp(vr), -+ dflp(or)) +n(F @A |p(vr), - - df[p(or)) = (f@) (@) (01, -+ on) + (F*0) () (01, -+ s o) O

2. fr(gw)(p)(vr, -+ s or) = gw(f(P)(df [p(v1), - df[p(on)) = (g © F)(P)(f*@)(P) (01, - -+, vx) O

3. [r(win - Awg)(p) (v, -+ v) = (Wi Awg) (f(p)(df [p(v1), - s df [p(vr)) = det(wi(df[,(v))))i; = det(f*wi(p)(v)))ij =
(ffwr A A frwk)(p) (1, o) O

9.2.1.3 Remark Let f:R" — R™, and let {y1, - ,ym} be a basis of R™. Then:

(z1,--- ’xn)T = (fu(@, - xn), s f(Tn, ,xn))T_

Let w =} ;ardyr € Q(R™). Then:
fro =3 fan)(f dyn) A A (F dyar)-

I
Note that:
(f*dyi)(v) = dyi(df (v)) = d(yi o f)(v) = (dfi)(v).
Thus:
ffw= Zaz(ﬁ(ﬂﬁhm )y s fn (@1, @) dfin A A dfi.
I

9.2.1.4 Remark Let U be an open set of R”. Then consider Q*(U) C QF(R™).

9.2.1.5 Example

Y
w=-— Jrdeac—i— Ty 2dy € Q' R\ {(0,0)}).

V={r0ecR*|r>00<0<2r}, f:V-=U (r0"— (rcosf,rsing)’.
Let’s compute f*w : | |- g<pcor R%T gy — V. Then:
dfy = cosOdr — rsin0df, dfs = sinfdr + r cos 6d6.

0 0
ffw= . s1;1 (cos Odr — rsin 0d) + CO:
r r

(sin Odr + r cos 6df) = db.

9.2.1.6 Prop Let f:R" — R™ be a differentiable mapping. Then:
1. f*(wAn) = (f*w)A(f*n) for any two forms on R™.

2. (fog)'w=g"(f*w), where g : R?» — R" is differentiable.

9.2.1.7 Proof

L. Let (y1, - ,ym) = (fi(z1,---,2n), - fm(21, - @) € R™, (21, ,2,) € R™. Let w =73 ;ardyr, n=>_,bsdy;.
Then:

frlwnn) =f (Zaledyl/\dyJ> Zal froo f)ba(fry oo s fm)dfr Ndfy =
i

(Za1<f1,--~ o dfz) (ZbJ fioo s fm de> = (f*w) A (fn).
I

O.g*)(w) = Zlal((f og)lv'” 7(fog)m)d(f Og>1 = Zlaf(fl(gh'" agn)a"' 7fm(glv"' 7gn))df1(dgl7 7dgn) =
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9.2.2 Exterior Differential

The differential of a mapping is a 1-form, f — df, from O-form to 1-form. We want to generalize this process for any
k-form.

(m—1)

d:Qlfm)(U)%Qk‘H U), wrdw, w:ZaIda:I, dw::ZdaI/\da:I,
I I

oar;
dar = Z —dx;.
I; 8l‘i

9.2.2.1 Example
w = ayzdr + yzdy + (x + 2)dz.

dw = d(zyz) Ndx + d(yz) Ndy + d(x + 2) Ndz = —xzdx ANdy + (1 — zy)dx A dz — ydy A dz.

9.2.2.2 Prop
1. d(wl —‘rUJg) = dwy + dws, Ywi,ws € Qk((])7 Ywi,wy € Q(U)
2. dwAn) =dwAn+ (-DfwAdy, weQkU), neQiU)
3. d(dw) =0 (d*w=0) weQ*U)
4. d(f*w) = f*(dw), we QFU), f:U —V is a differentiable function.
(1) Obvious. O
(2) Let w=73 ;ardry and n =3 bydx; then:
dlwAn) = Zd(a[bJ) ANdxy Adxy
1J
= bydar Adxr Adzy+ Y apdby Adar Aday
1J 1]
=dwAn+ (-1)"> ardey Ndby A day
1J
=dwAn+ (-DfwAdy O
(3) First assume w = f € QO(U):

d(df) = d zn: L2 ¥ (55_) A da;
=1 J

g=1"" j
% —dx; Ndx;
- - 83318953 v il'j)

O°F = _0°F e have d(df) = 0.

Since dx; A dr; = 0 and w0, = B, 037

For general w = aydxy, note that d?x; = d(dxy) = d(1) A dz; = 0. Hence:
d?w = d(dw) = d(day A dxg) = d*ar ANdxr — day ANd?xr =0 O
(4) Forw=g€QU), gof:R" - R™ = R:

(‘Tla"' 7xn) — (fl(‘r)v 5fm(x)) = g(fl(z)7 7fm(z))
]

9.2.2.3 Remark This forms a complex chain:

0—-Q%U) = Q" U)—---—0
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9.2.2.4 Chain Rule Computation
R" LR™ 4R

Previously proved that d(g o f)|, = dglsp) © dfp, thus:

d(g 0 Dlp() = dgl s @ 1() = Va(F0)dfl()
= V() (0)()
) - Bl(p)
oz 0Ty
=(§;< ) -fjﬂ(f@») o
U (p) - Slm(p)
=3 S ) F )

Moreover:

dtyo )= 3 A, o H02 D 57 205 I

9.3 Line Integrals

Fix w =Y, a;dz; € Q%m)(R"), m > 1.

9.3.1 Def

Let U C R™ be an open set, v : [a,b] = R". Jtg =a <t <--- <t <tpy1 = bsuch that vy, . ,] = 75 s of class Cct.
Then we define v as a parametric curve and ¢ € [a, b] as parameters.

9.3.1.1 Example f:R" — R of class O, then 7 : t — (¢, f(¢)) is a parametric curve.
v :t— (cost,sint) is a parametric curve.
For v; :Jtg, tg1[— R™, we can define vjw. This is a one form in Q' ([ty, txq1]). If v;(t) = (z1(t), -+, 2,(t)) then

= a0 () = 3 ailoa(t), () S

9.3.2 Line Integral
Let w and v be as above. Define:

j J
Remark
Fix v(t), v (t) = (%L(t), -, %= (¢)) = {the tangent vector of v in ¥(¢)}.
tj+1 . ti+1 ,
/ vjw=/ (aoy,vj)dt
since a oy = (ar(x1(t), - ,zn(t)), - ,an(x1(t), - ,z,(t))) and fy;» = (%, cee ddit").

9.3.2.1 Example Let F:R3 — R? be a field. v is the path of a particle under the action of F.
Fix t, Ay = y(t + h) —y(t), At = h. Ay ~/(t)At and lima;—0 32 = 7'(t).

(F(y(1), Av) ~ (F(y(t)),~'(t)) At
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